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Glossary 

ACRONYM DEFINITION 

AEU Avoided Energy Use 

ASHRAE  American Society of Heating Refrigerating and Air Conditiining Engineers 

CTB Comfort Take-Back 

CV(RMSE)  Coefficient of Variation of the Root Mean Square Error 

DECC Department of Energy and Climate Change 

EVO Efficiency Valuation Organisation 

FSU Fractional Savings Uncertainty 

HTC Heat Transfer Coefficient 

MAPE Mean Absolute Percentage Error 

MES Metered Energy Savings 
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NMBE  Normalised Mean Bias Error 
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1. Executive Summary 

This report focuses on the technical methods that will be developed to measure energy 

savings as part of RetroMeter. Developing a methodology that is universally applicable 

would be extremely challenging due to the broad scope of both retrofits and the potential 

end goals for which a metered energy savings methodology could be used. The aim is to 

therefore to develop a broadly applicable methodology that would be effective in the most 

common use cases, and could potentially be extended in future. To do this, we look at 

methodologies already in use and potential ways in which these might be combined. 

Since the majority of UK properties are currently gas heated, development of the 

methodology in Alpha and Beta will focus on modelling gas rather than electricity. This 

allows the evaluation of both fabric-only retrofits on gas heated properties and gas boiler 

to heat pump retrofits (as long as the energy consumed by the heat pump is directly 

measured). It has the significant advantage of eliminating the need to develop a half-

hourly model, as gas prices are not dependent on time of use. 

In addition, requiring internal temperature for a year pre-retrofit poses too significant a 

barrier to widespread adoption, so methods that require that have been ruled out.  

Around half of homes have a smart meter (and therefore should have 13 months of data 

pre-retrofit), so the core methodology can utilise this – but there needs to be an option for 

when that data is not available. 

The existing open-source methodology CalTRACK is broadly effective, but because it is 

dependent on historical energy usage from the same home it fails to account for external 

changes (e.g. energy price changes and Covid-19) which have been shown to be very 

important.  

Comparison-based methodologies (e.g. GRIDMeter) account for external changes by 

comparing energy usage to similar homes. However, this is dependent on the availability 

of lots of smart meter data from homes across the UK to match to, which is not currently 

available (but may be in future). 

Neither of the above approaches account for comfort take-back, which could be a 

significant factor in overall energy savings, and therefore business models. Direct 

quantification of comfort take-back could be achieved by combining the above 

approaches with a physics-based approach. This would require measuring the pre-retrofit 

heat loss of the property (Heat Transfer Coefficient, HTC) using either smart meter data (for 

which an algorithm would need to be developed) or a commercial HTC measurement 

solution (which would eliminate the need for smart meter data). The post-retrofit internal 

and external temperature measurements would be combined with the pre-retrofit HTC to 

calculate the counterfactual energy usage given post-retrofit comfort levels. This could be 

compared to the CalTRACK or comparison-based savings values (which don’t account for 

comfort take-back) to quantify comfort take-back directly. 

Method development in Alpha will therefore consist of a layered approach consisting of 

three components: 
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1. CalTRACK daily 

2. A comparison-based, difference-in-differences approach 

3. A physics-based approach that takes post-retrofit internal temperatures and models 

the pre-retrofit energy usage using an estimated heat transfer coefficient. 

 

This approach mitigates the risks around development and deployment of the 

comparison-based and physics-based methodologies, whilst hopefully delivering a flexible, 

scalable approach to metered energy savings that provides the option to account for both 

external factors and comfort take-back. 

Accuracy of these approaches will be assessed using the industry standard metrics 

(CVRMSE and NBME), with a focus on daily accuracy for individual properties. Alpha phase 

will also quantify how different sizes of portfolio affect accuracy and uncertainty.  
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2. Use case summary 

Here we give a brief summary of the five use cases outlined in WP1. These cover retrofits 

of homes with different heating systems and whether they pay based on a Time of Use 

(ToU) tariff. 

Use case 1 – A gas heated home undergoing fabric retrofit only. Gas billing is not ToU 

sensitive therefore model considers savings on a daily or even monthly basis. A 

counterfactual is required for gas usage (heating and non-heating) but not electricity.  

Use case 2 – Electrically heated home undergoing fabric retrofit only without ToU tariff. 

Again, savings can be modelled daily or monthly. Counterfactual for electricity heating and 

non-heating is required, but not for gas use (if any).  

Use case 3 – Electrically heated home with ToU tariff, fabric retrofit only. Savings must be 

modelled on sub-daily basis to account for ToU. Counterfactual for electricity heating and 

non-heating required. 

Use case 4 – Gas heated home, fabric upgrades plus fuel switch to electricity without ToU 

tariff. Daily or month model is sufficient. Gas heating and non-heating counterfactual 

required. Electric non-heating counterfactual or post-retrofit sub-metering of electric 

heating required. 

Use case 5 – Gas heated home, fabric upgrades plus fuel switch to electric with ToU. Gas 

heating and non-heating model required at daily or monthly level. Non-heating electric 

model at sub-daily level or post-retrofit sub-monitoring of electric heating.  
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3. WP2 – D1 Methods for comfort take-back, emissions 

and bill savings 

The goal of metering energy savings is typically to measure not just the energy savings (in 

kWh), but the financial (bill) savings and the carbon emission savings. The methodology to 

calculate savings will vary depending on the retrofit use case (These are explained in detail 

in WP1 findings). 

 

3.1 Bill savings 

The metered energy savings (MES) counterfactual would output Avoided Energy Use (AEU) 

measured in kWh. At a high-level, this avoided consumption, offset by any potential 

consumption resulting from fuel-switching (for use cases 4 and 5), could be multiplied by 

the gas or electricity unit price. If a retrofit led to all gas sources within the property being 

electrified (potentially use cases 4 and 5 if cooking was also electrified), the modelling 

should also consider the savings made from removing the gas standing charges from 

householders’ bills. 

In scenarios where time of use (ToU) pricing is relevant (use cases 3 and 5), peak and off-

peak pricing would need to be considered separately. However, if half-hourly or hourly 

counterfactuals couldn’t reliably be produced, it may be possible to aggregate multiple 

half-hours or hours in line with the tariff periods to avoid the “double penalty” and 

“spikiness” issues with electricity consumption data identified by previous MES work. 

Another consideration for the pay for performance (P4P) model in terms of bill savings 

would be the fluctuation in household energy prices, currently driven by Ofgem’s quarterly 

energy price cap changes. As retrofit projects may take several months to complete and 

could have longer lead times, e.g. if additional data collection was required, energy prices 

could fluctuate quite significantly between the initial design of the measures and 

associated financial products and the time at which energy savings are being realised. For 

example, between summer 2022 and winter 2023, Ofgem’s household energy price cap 

more than doubled (not taking into account the temporary Energy Price Guarantee).  

Note that this is not a source of uncertainty in metering energy savings (as the metering is 

backwards looking so prices are always known), but is likely important for a business 

model that is built on financial savings from retrofit. It will be necessary to better 

understand the cost distribution and incentive payments proposed under the P4P business 

model to evaluate the risk distribution associated with the proposed business models, 

which could be significant. 

 

3.2 Emission Savings 

Calculation of emissions savings can be done by converting from calculated energy 

savings. Conversion factors will depends on fuel type and time of use can also be factored 

https://es.catapult.org.uk/report/metered-energy-savings/
https://www.moneysavingexpert.com/utilities/what-is-the-energy-price-cap/
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in if energy savings are calculated on sufficiently short time scales (otherwise average 

conversion factors can be used). 

Use case 1: This covers a home where gas heating is used both before and after retrofit 

and therefore electricity consumption is expected to remain stable (and so no electricity 

counterfactual needs to be modelled). Emissions savings can be calculated using a 

constant conversion factor for the m3 or kWh-equivalent of gas saved, for example as 

provided by the Department for Energy Security and Net Zero. 

Use cases 2 and 3: This covers cases where electrical heating is already in use in the 

property and heating remains electric after retrofit. As discussed in previous work on 

Metered Energy Savings (MES), conversion factors for electricity can be obtained via the 

Electricity System Operator’s API on a more frequent basis, provided that a ToU model is 

being developed. For daily or monthly counterfactuals, a standard conversion factor could 

also be used. 

Use cases 4 and 5: This covers retrofits where heating is switched from gas to electric over 

the retrofit. Avoided emissions from avoided gas use should be calculated in the same way 

as for use case 1. However, the emissions from electricity consumed by the replacement 

electric heating system, most likely a heat pump, would need to be added to the 

calculation as gas emissions reductions will partly be offset by emissions generated by the 

new heating system. Sensors to submeter the heat pump-specific electricity consumption 

would help to accurately estimate carbon intensity of the heat pumps ToU-specific 

electricity usage. 

Note that if there is embedded generation (e.g. solar PV) then that needs to be 

submetered and compared to the time of use of the heat pump. If the property includes a 

battery then emissions estimations become significantly more complex and that is 

considered outside the scope of this project. 

 

3.3 Comfort / Temperature Takeback 

Whilst energy savings from retrofit interventions are usually modelled theoretically based 

on the existing building fabric and proposed interventions, it has been repeatedly 

observed and studied that actual, realised energy savings from retrofits fall short of the 

modelled predictions. This can have several reasons – a major one studied being “comfort 

take-back” (CTB) or “temperature take-back”. Specifically, CTB refers to the situation in 

which heating demand remains higher than modelled because the building occupants 

increase the internal target temperature of their property rather than realising the full 

potential energy cost saving. More generally, this observation, in relation to various energy 

efficiency measures, not just retrofits, is also called the “rebound effect”: where increases in 

energy efficiency should theoretically lead to reductions in energy demand, these are 

partially offset as the reduced energy cost resulting from the efficiency improvements 

allows the consumer to increase their energy demand. Previous research (Galvin and 

Sunikka-Blank, 2016) has found that the CTB for heating is commonly estimated to lie 

https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting
https://es.catapult.org.uk/report/metered-energy-savings/
https://es.catapult.org.uk/report/metered-energy-savings/
https://data.nationalgrideso.com/api-guidance
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between 10%-35% whereas research from the Department of Energy and Climate Change 

(DECC) (Department of Energy and Climate Change, 2014) assumes 15% CTB. However, the 

same research also identified a “prebound effect” whereby CTB might be exacerbated 

further because occupants of inefficient homes reduced their energy consumption below 

calculated comfort levels prior to the retrofit. According to their calculations on German 

datasets, this “under-consumption” prior to retrofits was on average 35% meaning that 

estimates of the impact of thermal retrofits could be exaggerated by 50% or more. Given 

the recent energy bills crisis, the pre-bound effect could be increased even further 

although peer-reviewed analysis of its impact on people’s heating behaviour has not yet 

emerged. 

Further work has highlighted that the CTB has frequently been studied in the context of 

social housing (Coyne and Denny, 2021). However, they point out that it might be 

exacerbated in this context due to higher levels of fuel poverty. According to other work, 

owner occupiers, might experience lower levels of CTB due to higher levels of wealth which 

would allow them to heat their homes to an appropriate standard regardless of cost: their 

research showed CTB at 26.7% for homeowners compared to 41.3% for tenants with 

household wealth and income being major contributing factors to the observed 

heterogeneity in CTB (Aydin, Kok and Brounen, 2017). Conversely, other research found 

that social housing tenants may be less affected by CTB if they were previously able to 

appropriately heat their home and a “saturation effect” takes place (Calderón and Beltrán, 

2018). However, these findings were based on an individual block of flats only and state 

that individual building properties such as the location of heat pipes could influence these 

results for different buildings.  

Lastly, the time at which the MES takes place should also be considered carefully: in a large 

panel study of 55,154 homes in the UK using data from the National Energy Efficiency 

Data-Framework (NEED), research has found that the effects of energy efficiency measures 

rebound only after a certain time, for example after two to four years for cavity wall 

insulation and after one to two years following loft insulation (Peñasco and Anadón, 2023). 

This means that MES that measure the energy consumption immediately after the retrofit 

may be less affected by CTB; however, longer-term monitoring of the retrofit effects may 

still be warranted to ascertain whether effects other than installation quality are reducing 

the impact of the measures. Furthermore, the authors recommend that financial incentives 

to households benefitting from retrofits could help reduce medium- to long-term CTB. 

Based on the literature reviewed, we would expect that the amount of comfort take-back 

will vary depending on the type of retrofits, dwellings and ownerships chosen for the Pay 

for Performance (P4P) product. When designing and targeting P4P products there may be 

benefit to estimating likely scale of comfort take-back for individual homes in advance. 

Homes likely to have greater comfort take-back may have higher uncertainty on the 

financial savings, which might need to be considered in the design of the financial product. 

Broadly speaking, comfort take-back could either be estimated (or explicitly ignored as is 

done by CalTRACK) and presented alongside the MES or integrated into the modelling. 

The latter approach would require additional data collection to be viable. The approach 

taken to either estimating or modelling comfort take-back will depend on the delivery 

https://linkinghub.elsevier.com/retrieve/pii/S0301421521004468
https://onlinelibrary.wiley.com/doi/10.1111/1756-2171.12190
https://linkinghub.elsevier.com/retrieve/pii/S037877881734094X
https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework
https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework
https://www.caltrack.org/
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model chosen for P4P, e.g. the market segments and outcomes it is targeting. Note that 

while comfort take-back may be ‘bad’ from a financial perspective, it can often be a ‘good’ 

outcome from a broader perspective – particularly where underheating was occurring. 

Different approaches for accounting for comfort take-back have been considered and are 

summarised in the table below.  
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Approach Option Pros Cons Potential application to delivery models 

Assume comfort take-

back is negligible 

• Approach taken by gold-

standard models 

• No requirement to collect 

additional data 

• Likely to work better for 

commercial property where 

comfort levels are likely to 

be more stable pre- and 

post-retrofit 

• Could be applied to delivery models 

where comfort take-back is expected 

to be lower, e.g. privately owned 

property where saturation effect 

might be taking place or housing 

where pre-retrofit temperatures were 

close to standard comfort 

temperatures (Delivery Model Option 

4, see WP3.D8) 

Assume comfort take-

back does not occur 

immediately but that 

behaviour changes take 

time to settle in 

• No requirement to collect 

additional data 

• Method may be dependent 

on timing of retrofit 

• Time period over which 

behaviour changes are likely 

to take place would need to 

be assumed / researched 

• As above (Delivery Model Option 4) 

Estimate comfort take-

back (outside of MES 

models) 

• Considerable amount of 

literature investigating the 

different levels of comfort take-

back 

• Flexible approach that could be 

adjusted to specific retrofit 

project requirements 

• No ability to verify whether 

assumptions match reality 

• Could be applied to delivery models 

where portfolio of properties is 

targeted, and extreme behaviours 

could be smoothed out (Delivery 

Model Option 4) 

Estimate comfort take-

back and include in MES 

models 

• As above 

• Assumptions could be applied 

more consistently rather than 

• No ability to verify whether 

assumptions match reality 

• Could be applied to delivery models 

where portfolio of properties is 

targeted, and extreme behaviours 
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based on individual project 

team’s assumptions 

• Assumptions hidden in 

model would be less 

transparent to “customer” 

could be smoothed out (Delivery 

Model Option 4) 

Survey household 

comfort levels pre- and 

post-retrofit (either to 

include in modelling or 

for estimation as part of 

the P4P product) 

• Less intrusive than methods that 

require detailed data collection 

• Shorter lead-time to start 

project 

• Delivery of surveys (and 

ensuring they collect good 

quality data) takes 

significant effort and may 

not be practical for many 

schemes  

• Could introduce incentive to 

over-represent internal 

temperature prior to the 

retrofit taking place to 

lower the expectation of 

comfort take-back and 

increase the modelled 

retrofit performance (see 

below for further 

exploration) 

• Could be applied where installation 

of additional sensing equipment 

might be difficult (e.g. Delivery Model 

Option 7 or 9) 

• Could be applied where social 

benefits override performance 

concerns (Delivery Model Options 1 

and 6) 

Install detailed 

monitoring pre- and 

post-retrofit to measure 

comfort take-back in 

terms of temperature 

changes 

• Accurate measurement of 

comfort take-back 

• Increase lead times to allow 

for data collection 

• Data collection may be seen 

as too intrusive by 

householders 

• The quality of sensors and 

the design of the sensor 

installation could impact the 

availability and reliability of 

data captured 

• Could be applied to individual home 

retrofits where extremes are likely to 

be more pronounced or where social 

benefits are the overriding concern 

(Delivery Model Option 1 and 6) 

• Some platforms to monitor 

condensation and mould risk already 

exist which may be adopted for this 

purpose. 
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• System would need to be 

designed to prevent 

manipulation (e.g. moving 

of sensors closer to or 

further away from heat 

sources) 

• Sensor installation quality 

can be variable on larger 

schemes introducing 

measurement errors  

Install detailed 

monitoring pre- and 

post-retrofit to enable 

modelling of comfort 

take-back 

• More accurate modelling of 

comfort take-back would be 

enabled 

• As above 

• Translation of temperature 

increases into avoided 

energy use (AEU) may be 

non-trivial 

Could be applied to individual home 

retrofits where extremes are likely to be 

more pronounced 
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The following consequences might help guard against incorrectly measuring or estimating 

the comfort take-back (either based on assumptions or surveys): 

• % comfort take-back measured/assumed is too low (for example, assumed 15% but 

actual was 30%): 

o Avoided Energy Use (AEU) will be over-estimated 

o Performance of retrofit will perform worse than modelled 

o Assuming that social benefits are not relevant to P4P, P4P might pay out 

more than it should 

• % comfort take-back is too high, e.g. due to “saturation effect”: 

o Avoided Energy Use (AEU) will be under-estimated 

o Performance of retrofit will perform better than modelled 

o Assuming that social benefits are not relevant to P4P, P4P might pay out less 

than it should 

Due to these consequences, if a survey-based or assumption-based approach was chosen, 

there might be a perverse incentive to underestimate the comfort take-back to increase 

the P4P “return”. 

Taking measurements of internal temperature, as conducted in previous research, would 

provide the most accurate measurement of comfort take-back (Calderón and Beltrán, 

2018). However, it is unlikely to be feasible to install measurement equipment in properties 

one year prior to the retrofit.  

Surveys of temperature set points prior to, and following, the retrofit could be used as a 

proxy, but they might be inaccurate as temperature set points and achieved target 

temperatures could vary and households might intentionally misrepresent their current 

energy usage.  

If there is no data available, comfort take-back could be estimated using some of the 

commonly identified values, e.g. 15%, (as discusses above) - this approach might be 

suitable if a portfolio approach to retrofits was chosen where extreme observations would 

likely be smoothened out across multiple properties. 

Alternatively, comfort take-back can be estimated by comparing a physics-based 

methodology that applies post-retrofit temperatures to pre-retrofit fabric with a 

conventional metered energy savings methodology (see section 4). 
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4. WP2 – D2 Evaluation Metrics 

4.1 Evaluation metrics scope 

During the Alpha Phase, all developed Metered Energy Savings (MES) counterfactual 

algorithms will be evaluated against thresholds previously set to establish whether the 

results achieve sufficient accuracy in predicting household energy consumption. Only if the 

MES counterfactuals achieve sufficiently accurate predictions, can they be used in the Beta 

Phase to calculate avoided energy use (AEU) on homes which have been retrofitted; if the 

forecasting accuracy was too low, it would not be possible to establish conclusively 

whether changes in energy demand after the retrofit were due to the retrofit. 

In the Beta Phase of the project, AEU calculated from the developed models should also be 

compared to the energy savings recorded in the “National Energy Efficiency Database” 

(NEED): the latest NEED report on domestic properties provides the mean and median gas 

and electricity savings for various measures installed in 2018 (savings were metered in 

2019). The figures presented in the report do not account for comfort take-back); hence, 

the impact of measures may appear to be lower than retrofit designs would assume. 

Detailed data about retrofitted dwellings is also available that would allow further 

disaggregation of the findings by administrative region, property age group, floor area, 

council tax band and index of multiple deprivation1,2. 

 

Figure 1: Median and mean energy savings (gas and electricity) from individual retrofit measures implemented in 2018. 

 

1 For properties in England only: Index of multiple deprivation, England (2019) quintile based on the Lower 

Layer Super Output Area (LSOA) the property is in. 
2 Gas consumption data is weather corrected. 

https://www.gov.uk/government/statistics/national-energy-efficiency-data-framework-need-report-summary-of-analysis-2021
https://www.gov.uk/government/statistics/national-energy-efficiency-data-framework-need-report-summary-of-analysis-2021
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Figure 2: Median and mean energy savings (gas and electricity) from combined retrofit measures implemented in 2018. 

There are two other key elements to consider when determining evaluation scope: time 

resolution and individual property/portfolios. There is a trade-off between these – if 

savings need to be attributed to individual properties, then a less granular time resolution 

can be achieved. 

4.1.1 Time resolution 

Metered energy savings are typically assessed at one of three time resolutions: hourly, 

daily or monthly.  

Hourly (or half-hourly) assessment is typically only required where energy prices vary 

significantly by time of use and the retrofit is expected to significantly alter when energy is 

used (e.g. installing a heat pump). In the UK electricity tariffs may have different rates for 

each half hour (not just each hour), so a half-hourly resolution may be required. Gas tariffs 

do not vary based on time of use, so this resolution is not required if only gas is being 

modelled. Achieving a high accuracy with hourly methods is extremely difficult due to 

variations in occupant behaviour from day-to-day. For example, if the time the evening 

meal is cooked varies between 5pm and 7pm, the models will struggle to accurately 

predict that for a specific day. 

Monthly assessment is typically used when only monthly bills are available, or when overall 

magnitude of cumulative savings is the key concern. 

Daily assessment evaluates the accuracy of savings on a daily basis, which provides 

significantly more data points than monthly, and therefore allows a better understanding 

of confidence in savings, as well as more insight into factors affecting savings (e.g. 

weather). 

For Alpha phase, we will focus on assessing accuracy at a daily resolution. 

4.1.2 Individual property vs portfolio 



 

18 es.catapult.org.uk 

Depending on the business model, metered energy savings can be assessed for a single 

property or group of properties that had interventions at a similar time. 

It is easier to get an accurate assessment of savings on a group of properties because the 

randomness from individual behaviours in the different properties tends to cancel out, 

making the effect of the savings clearer. 

However, in applications where the value case involves savings being tied to individual 

properties (e.g. the occupant has a financial product tied to savings in their home) then 

accuracy on individual properties must be evaluated. 

For Alpha phase we will focus on assessing accuracy on individual properties. 

4.1.3 Sources of Uncertainty  

The Efficiency Valuation Organization (EVO) identifies six sources of uncertainty in the 

energy savings Measurement and Verification (M&V) process:  

Firstly, instrumentation error resulting from inaccurate measurement devices. Whilst this 

should be relatively small for fiscal gas and electricity meters, low-cost sensor solutions to 

measure internal temperature and occupancy might suffer from lower accuracy.  

Secondly, modelling error introduced by the chosen modelling approach. Commonly used 

evaluation metrics for establishing the size of the modelling error are summarised in the 

next section.  

Thirdly, sampling error can stem both from limitations on the scope of instrumentation 

used for M&V (e.g. whole-property vs individual appliance measurements) as well as the 

temporal resolution of the data collected that might lead to a misrepresentation of the 

actual energy used.  

The remaining three sources of uncertainty are, estimated values, interactive effects that 

cannot be measured and challenges related to data collection and analysis. However, EVO 

suggests that these latter three causes of uncertainty should be comparatively small in 

comparison to the other sources of uncertainty.  

Generally speaking, there is a trade-off between M&V rigor and accuracy with the 

Efficiency Valuation Organization recommending that M&V costs should not exceed 10% 

of the expected energy cost savings to represent value for money. 

4.2 Evaluation Metrics and Justification 

4.2.1 CalTRACK and SENSEI methods 

The previous evaluation of the SENSEI and CalTRACK methods for calculating metered 

energy savings (MES) used the Normalised Mean Bias Error (NMBE) and the Coefficient of 

Variation of the Root-Mean-Square Error (CV(RMSE)) as evaluation metrics which are also 

recommended by ASHRAE (American Society of Heating, Refrigerating and Air-

Conditioning Engineers).  

The NMBE measures whether the model consistently over- or underpredicts energy 

consumption, i.e. whether the model is biased overall. However, as over- and 

https://evo-world.org/en/
https://evo-world.org/en/
https://es.catapult.org.uk/report/metered-energy-savings/
https://es.catapult.org.uk/report/metered-energy-savings/
https://webstore.ansi.org/standards/ashrae/ashraeguideline142014
https://webstore.ansi.org/standards/ashrae/ashraeguideline142014
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underprediction errors cancel each other out, it alone cannot be used as a measure of 

model accuracy. The NBME is defined as: 

𝑁𝐵𝑀𝐸 =  
∑(�̂�𝑖 − 𝑦𝑖)

(𝑛 − 1)
/�̅� 

where �̂�
𝑖
 is the predicted energy consumption at time step 𝑖, 𝑦

𝑖
 is the observed value, and 

�̅� is the mean observed usage, and 𝑛 is the number of time intervals in the data. 

The CV(RMSE) is a measure of the size of errors regardless of whether the model is over- or 

underpredicting consumption. As prediction errors are squared, the direction of prediction 

error is ignored, and larger prediction errors are penalized more than small errors. The 

CV(RMSE) normalises the prediction error by the mean observed energy usage and is 

defined as: 

𝐶𝑉(𝑅𝑀𝑆𝐸) =  √
∑(𝑦𝑖 − �̂�𝑖)2

(𝑛 − 1)
/�̅� 

In Alpha we will evaluate point-based methods using NMBE and CV(RMSE). Doing so 

will provide the benefit that the developed methods will be easily comparable to other 

literature in this field. 

4.3 Physics-based models  

Physics-based models, such as the SMETER methodology, calculate the heat transfer 

coefficient (HTC) of a property, rather than the heating energy consumption (Allinson et al., 

2022). However, establishing the HTC through measurements such as a co-heating test is 

expensive and impractical, and cannot be conducted on scale. As such, it is much more 

difficult to compare the calculated HTC against a real-world measured value. Large 

datasets with measured HTC are not easily available. 

However, there are two additional ways of measuring the accuracy of HTC estimates when 

combined with models to convert those estimates into energy use. The first is to evaluate 

the accuracy of the end-to-end metered energy solution in exactly the same way as above. 

This makes it harder to identify which element of the modelling is driving errors (e.g. the 

HTC calculation or the HTC plus temperature to energy usage conversion), but is ultimately 

likely a suitable approach for this use case and will be used during Alpha. 

This can be supplemented by measuring the accuracy of hour-by-hour internal 

temperature prediction within a home based on observed energy use and HTC. This 

provides greater insight into where errors might be arising, and so if the internal 

temperature data are available this approach will be used during Alpha. 

4.4 Accuracy thresholds 

All candidate MES algorithms should be evaluated against an appropriate threshold that 

defines whether the algorithm’s performance is sufficient to allow usage of the model 

within a P4P product. Where possible, these evaluation thresholds should be based upon 

existing methods or findings related to MES to allow comparison of results to established 

best practices. 
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For the NMBE and CV(RMSE) evaluation metrics, ASHRAE stipulates an NMBE of 5% and a 

CV(RMSE) of 15% relative to monthly calibration (baseline) data. If hourly calibration data 

are used, these requirements shall be 10% and 30% respectively. The guideline does not 

state any thresholds for models using daily calibration data; however, a threshold between 

these two values may be appropriate. 

In practice the required accuracy often depends on the size of the expected retrofit 

savings. For a model to be considered valid, the IPMVP standard from the Efficiency 

Valuation Organization (EVO) also recommends that model accuracy should be considered 

relative to the level of savings expected from the retrofit: the standard error of the estimate 

must be <50% of the expected savings at a specified confidence level. This is known as the 

Fractional Savings Uncertainty (FSU). The confidence level is typically set no lower than 

68% although higher confidence levels of 80-90% with lower levels of errors are frequently 

preferred for M&V analyses. 

For commercial property, the Efficiency Valuation Organization (EVO) recommends that 

retrofits should result in at least 10% of AEU for whole property retrofits where only 

monthly energy consumption data is available. This is required to accurately distinguish 

AEU from noise within the data. For retrofits where daily data is available, retrofit options 

with a predicted saving of 5% or more could also be considered.  Based on the NEED data, 

not all retrofits achieve savings of this level; although the reported savings could be higher 

if comfort-take-back could be quantified to some extent, e.g. through measurement or 

surveying of internal temperatures pre-and post-retrofit. 

If the business model is based on a portfolio and does not require accuracy on individual 

properties then more lenient thresholds can be employed because errors in different 

properties cancel each other out. suggests that a CVRMSE of 100% for individual 

properties may be suitable for large portfolios as long as portfolio-level thresholds of FSU 

are respected. 

For Alpha, we will look at the proportion of homes meeting different accuracy 

criteria (e.g. 5% NBME and 15% CVRMSE / 10% NBME and 30% CVRMSE) to understand 

how suitable the methodology is for different scales of retrofit. 

We will also quantify how different sizes of portfolio affect accuracy and uncertainty. 

4.5 Other methodological consideration related to model evaluation 

“WP1-D1 Data Requirements and Sample Size” discussed that clustering of collected data 

prior to model development may help in identifying types of properties to which the 

methodology can be applied with higher levels of certainty. If this suggestion was 

followed, the evaluation metrics should be disaggregated by this dimension (provided the 

sample size for each cluster is sufficiently large) to compare which types of properties may 

be most suitable for a P4P product. 

The end-to-end methodology should not only report on model-uncertainty but also other 

areas of uncertainty, e.g. from incomplete data or measurements errors or missing input 

variables (e.g. for the calculation of comfort take-back). 

https://webstore.ansi.org/standards/ashrae/ashraeguideline142014
https://evo-world.org/en/library/download-protocol-documents-mainmenu-en/ipmvp-core-concepts/2025-2022-new-ipmvp-core-concepts-in-english/file
https://evo-world.org/en/library/download-protocol-documents-mainmenu-en/ipmvp-core-concepts/2025-2022-new-ipmvp-core-concepts-in-english/file
https://evo-world.org/en/library/download-protocol-documents-mainmenu-en/ipmvp-core-concepts/2025-2022-new-ipmvp-core-concepts-in-english/file
https://www.recurve.com/how-it-works/portfolio-aggregation-uncertainty#:~:text=Fractional%20Savings%20Uncertainty,Fractional%20Savings%20Uncertainty%20(FSU).
https://www.recurve.com/how-it-works/portfolio-aggregation-uncertainty#:~:text=Fractional%20Savings%20Uncertainty,Fractional%20Savings%20Uncertainty%20(FSU).
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5. WP2 – D3 Methodology Options Review 

5.1 Goals of methodologies / challenges 

The fundamental objective of the metered energy savings solution under consideration is 

"to calculate the financial, carbon, and energy savings that can be attributed to a heating-

related retrofit." The term "attributable" here is crucial. There are various factors that can 

affect energy usage which should not be attributed to the retrofit, and ideally, a metered 

energy savings solution should account for these. These factors include: 

1. Variations in weather conditions, such as a warmer winter. 

2. Alterations to household composition, for instance, the birth of a child or a child moving 

out. 

3. Changes in occupancy patterns that are not connected to the retrofit, such as working 

from home or going on a vacation. 

4. Adjustments in energy usage due to variations in financial circumstances or fluctuating 

energy prices. 

 

A significant consideration is how changes in behaviour post-retrofit that could reasonably 

be attributed to the retrofit should be included in this solution. Specifically: 

5. Changes in heating demand due to the possibility of different budget/comfort trade-offs 

post-retrofit, commonly referred to as 'comfort take-back', as explained above in section 

3.3. 

 

It's clear that isolating the impact of a retrofit from these other factors for an individual 

home is an incredibly complex problem, requiring a pragmatic approach that delivers a 

'good enough' solution for specific applications. Typically, this involves: 

 

• Adjusting for weather, which is relatively simple given the availability of weather data. 

• Aggregating results from a large number of properties, with the hope that some of the 

other changes will cancel each other out. 

• Evaluating savings at a less-granular time resolution, such as daily instead of hourly, in 

the expectation that some of the other changes will even out over time. 

 

The Covid-19 pandemic and the energy crisis have underscored the need to adjust for 

large-scale changes in behaviour that aren't related to retrofitting. Some approaches now 

purposefully aim to address this by using comparison groups. Other strategies seek to 

control for other drivers of change by gathering and integrating larger volumes of data, 

either over extended periods (12+ months) or through additional data types, such as 

internal temperature. However, gathering more data poses significant practical challenges 

when implementing actual retrofit projects. 

 

It's important to note that we are explicitly interested in the impact of heating-related 

retrofit, so it's crucial to separate out heating energy use. A key question is whether 

models need to achieve half-hourly resolution to provide accurate estimates of energy 

cost, for instance, due to a time-of-use tariff. 
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Thus, when evaluating each approach below, six points should be considered: 

1. What data does it require? 

2. How does it separate heating from non-heating energy usage? 

3. How does it adjust for weather? 

4. How does it account for changes to heating demand potentially related to the retrofit 

(comfort take-back)? 

5. How does it account for changes to heating demand resulting from macro-scale external 

factors like energy price fluctuations? 

6. How does it account for changes in occupancy patterns that are unrelated to both the 

retrofit and macro-scale external factors? 

 

5.2 Approaches 

In this section, we're going to delve into the currently used strategies to evaluate the 

effects of energy efficiency initiatives. The insights garnered will be pertinent to the 

RetroMeter project, and we discuss the potential benefits and drawbacks of integrating 

similar approaches within our project. Furthermore, we highlight possible enhancements to 

each method and specify the data that would be necessary for their implementation. 

5.2.1 CalTRACK 2.0 

CalTRACK refers to a set of procedures that allows for the calculation of energy savings, 

primarily focusing on the estimated energy consumption in a building post-intervention as 

though the intervention never occurred, this is known as the counterfactual. 

CalTRACK's processes are developed under an open-source methods charter, and each 

method is assigned a number and version for reference. The development of these 

methods is a collaborative effort hosted on Github, a platform well-suited for open-source 

projects. These methods are typically required to undergo empirical testing, with the 

results shared in the CalTRACK Methodological Appendix. Various member organizations 

contribute to the development and approval of these methods. 

CalTRACK is currently on version 2.0 and references to CalTRACK imply CalTRACK 2.0, 

unless otherwise stated. Note that the community is currently working on an update 

(CalTRACK 2.1) which may be available by the start of Alpha. 

5.2.1.1  CalTRACK 2.0 - Daily method 

The CalTRACK daily method relies on a linear model with three energy use regimes: 

heating, cooling, and baseload, which is fitted to the year’s data. The CalTRACK methods 

attempt to identify external temperatures at which heating and cooling begin to be 

required in the home (these are known as heating and cooling balance point 

temperatures). The heating (and cooling) requirements on different days are then 

accounted for using the difference between external temperature and the balance point 

temperature and the duration of the difference (this concept is known as heating degree 

days). This then provides the basis by which the model can adjust energy use for external 

temperature. This method does not account for comfort take-back, external factors or 

changes in occupancy patterns. 

https://www.recurve.com/support-articles/what-is-caltrack-2-0
https://www.recurve.com/how-it-works/caltrack-billing-daily-methods
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 Necessary data: 

• Daily energy usage 

• Hourly external temperature 

These are required before retrofit for 1 year (for model training) and after retrofit (for 

energy savings evaluation). 

CalTRACK prescribed data sufficiency criteria dictate that the number of days with missing 

consumption and temperature data should not exceed 37 days (10%) for daily methods.  

Potential improvements to CalTRACK daily: 

1. Identify groups of homes for which CalTRACK performs better/worse. This would 

improve the uptake of CalTRACK in UK metered energy savings projects for the 

homes for which CalTRACK works better and could focus work to improve CalTRACK 

for the other homes. (This would require significant analysis of lots of home energy 

data, but not actually an improvement to CalTRACK) 

2. Improve heating energy estimates using internal temperature with external 

temperature to find the true temperature delta. (We expect slightly higher heat loss 

from homes when they are hotter e.g. 18 vs 21).  

3. Use additional weather parameters. (e.g. wind, solar irradiance and rain may impact 

heating requirements) 

5.2.1.2 CalTRACK 2.0 - Hourly method 

The CalTRACK hourly method produces hourly estimates of metered energy savings. It fits 

a different model for each calendar month using data from the corresponding month and 

previous and following months from the previous year (surrounding months are given half 

weighting in the fit). It models occupancy using the energy use data on a time-of-week 

basis with 168 states, represented as either 0 or 1 to indicate occupancy. The model also 

incorporates binned external temperatures to fit coefficients. Thus, the hourly model serves 

as a time-of-week temperature (TOWT) model (originally proposed here). This model does 

not split out energy use for heating and other uses. This method does not account for 

comfort take-back, external factors or changes in occupancy patterns (between pre- and 

post-retrofit).  

Necessary data: 

• Hourly energy usage 

• Hourly external temperature 

These are required before retrofit (for model training) and after retrofit (for energy savings 

evaluation). The duration of required data depends on the required prediction duration (if 

only single months need modelling), but in practice a year of pre-retrofit data is required 

to estimate savings for a year post-retrofit. 

The data sufficiency criteria for the hourly method dictates that no minimum baseline 

period length is necessary, but baseline consumption data must be available for over 90% 

https://www.recurve.com/how-it-works/caltrack-hourly-methods
https://eta-publications.lbl.gov/sites/default/files/LBNL-4944E.pdf
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of hours in the same calendar month and in each of the corresponding, previous and 

following calendar months of the previous year. 

Potential improvements to CalTRACK hourly: 

1. Does CalTRACK work well on certain types of homes? Identify these groups to 

improve the uptake of CalTRACK in UK metered energy savings projects. (This would 

require significant analysis of lots of home energy data) 

2. Train two separate models (occupied and unoccupied), and then use the same 

approach to estimating occupancy that is applied pre-retrofit to flag occupancy 

post-retrofit in order to select which model to use for each hour.  

3. Improve estimated occupancy during pre-retrofit period (e.g. with internal 

temperature data or other sensor/survey data). 

4. Disaggregating heating before using CalTRACK hourly model. Could be done 

programmatically or with sub-meter. (Unclear how/if this would improve accuracy of 

the model, we would then have two models to train, baseload and heating).  

5. Adapt it to work on half-hourly data. (If required for increased granularity of cost 

calculations) 

5.2.1.3 Implementation and usage 

OpenEEMeter is an open-source implementation of the CalTRACK framework. 

OpenEEMeter is currently on CalTRACK v2.0, which was assessed for use in UK homes 

during the Metered Energy Savings project. Carbon Coop has submitted changes to 

CalTRACK which have been accepted under OpenEEMeter CalTRACK v2.1. This includes 

improvements to accuracy of the daily model using separate winter/summer/shoulder 

season models with an additional split between weekday and weekend. This also includes 

working with temperatures in Celsius and improvements to weather data access outside 

the US. 

Evaluation of CalTRACK/OpenEEMeter on UK homes as part of the previous Metered 

Energy Savings project demonstrated acceptable performance for aggregations of 

properties (>15) but poor performance for individual properties, particularly for hourly 

methods.  

Advantages: 

1. CalTRACK methods are already in use in the US and have a proven business case 

there. 

2. Open implementations of CalTRACK methods are available, so would make a good 

starting point for modifications and improvements. 

3. Designed to meet guidelines established by The American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE Guideline 14) and the 

Uniform Methods Project (Chapter 8 - Whole Building Methods). Compliance with 

whole site International Performance Measurement and Verification Protocol 

(IPMVP) requirements. 

4. The methods are subject to ongoing review and improvement by an international 

technical working group. 

https://eemeter.openee.io/
https://es.catapult.org.uk/report/metered-energy-savings/
https://www.ashrae.org/technical-resources/standards-and-guidelines/titles-purposes-and-scopes
https://www.energy.gov/eere/about-us/ump-protocols
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Limitations 

1. CalTRACK methods do not account for external factors like energy price changes. 

(See Comparator section for methods to overcome this) 

2. CalTRACK methods do not account for comfort take-back. (See Physics-based 

section for methods to overcome this) 

3. CalTRACK hourly methods do not perform sufficiently accurately for individual 

homes 

5.2.2 Comparator 

Comparator models aim to address a key issue in metered energy savings: attributing 

changes in energy use to interventions rather than external factors. These models compare 

a home that has undergone an intervention to similar homes without interventions, 

providing a more effective baseline for external factors than comparing pre- and post-

intervention energy use within the same home. 

A comparator model matches a home either to a single best comparison home or to an 

aggregate of multiple homes. Using a single home is simpler but leaves the method 

vulnerable to changes impacting only the comparison home, and it also has increased data 

privacy challenges. Aggregating data from multiple homes avoids these issues but may 

result in artificially smoothed energy usage data and require access to more data. 

To implement a comparator model, data is required from both participating homes and 

comparison homes (where no energy efficiency measures will be implemented during the 

trial). The data includes energy data, weather data, and home attribute data (used to 

segment and match homes). Various methods can be employed to predict energy use. 

Energy use of comparison homes in the same category can be used directly as the 

counterfactual energy use of the participating home, or a modelled counterfactual can be 

produced for both participating and comparison homes, adjusting the counterfactual for 

the participating home based on the error seen in matched comparison homes. This latter 

method is known as the difference-of-differences method. 

The main downsides of comparison methods are the need for large datasets for 

comparison groups and the question of incentivizing comparison groups to provide their 

data. GRIDmeter is a method used in the US that combines CalTRACK methods and 

comparison groups to model energy savings and account for potential external impacts on 

energy use. It uses the comparison group data to calculate an additional counterfactual 

which is then used in a difference of difference method.  Any changes in energy usage 

across the comparison group could then be attributed to external factors, allowing for a 

correction to the energy savings calculations for participants who underwent an 

intervention.  

Using GRIDmeter, the data requirements start from the same point as CalTRACK, but for 

many homes. Data is needed for sufficient homes to find a similar single or group of 

https://gridmeter.recurve.com/
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homes. We expect there will be categorical data required about the homes, for example 

building age, size and occupancy, which will be used to group/match the homes. This 

model would not explicitly disaggregate heating from other energy use, although if 

CalTRACK daily were used, this would be done internally to the model. Adjustments for 

weather are as described for the CalTRACK models and would not account for comfort 

take-back. The comparison between similar homes would account for external factors but 

not for changes in occupancy.  

According to Recurve, portfolio and comparison group sizing are crucial for reducing 

uncertainty. They suggest that using a sample size of 3,000 non-participant buildings 

results in a mean error of 0.3-0.7% and a mean absolute percentage error (MAPE) of 1.4-

1.5%. The stability of comparison groups is also an important consideration, as all groups 

will eventually diverge due to factors outside the trial's control (for example unrelated 

retrofits may occur in the comparison group). 

Matching of homes is a very important consideration for these methods. Homes can be 

matched using various features, such as energy use, external temperature, and internal 

temperature. Different strategies can be employed to find the best match within the 

sample population, including evaluating carefully chosen metrics for the participating 

home and finding the N comparison homes that are “closest” or within a certain threshold 

“distance”. Other methods involve segmentation of homes into groups using certain 

features and then matching homes within those groups using other features.  

The Pacific Gas and Electric Company conducted a study that investigated various methods 

of modelling energy savings, with a focus on comparator methods integrated with existing 

CalTRACK methods or entirely new methods. They recognized the need for comparator 

methods due to population-wide impacts, such as the COVID-19 pandemic, that 

investigated various methods of modelling energy savings, with a focus on comparator 

methods integrated with existing CalTRACK methods or entirely new methods. They 

recognized the need for comparator methods due to population-wide impacts, such as the 

COVID-19 pandemic. 

The key findings from the study were as follows: 

1. Existing CalTRACK methods cannot account for the effects of the COVID-19 pandemic. 

2. Existing CalTRACK methods show upward bias even before the pandemic. 

3. Comparison groups improve the accuracy of the CalTRACK method. 

4. The choice of segmentation and matching characteristics matter more than the method 

of matching customers. 

5. Synthetic controls may perform well but are subject to extreme bias in some cases. 

6. Using aggregated granular profiles in the CalTRACK Difference-in-Differences approach 

yields comparable results to using individual customer matched controls. 

https://www.pge.com/
https://pda.energydataweb.com/api/view/2566/Draft_Final_PGE_NMEC_Accuracy_Assessment_Report_12032021.docx
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7. Accuracy and precision depend on the number of sites aggregated together. 

8. No method is completely free of error. 

Based on these findings, the study recommends the use of a framework to test, certify, and 

estimate savings for NMEC methods. Certification criteria for accuracy and precision should 

be based on sample size. The best-performing models were found to include CalTRACK 

models with control groups and their alternative Pre-Post models with control groups. 

Furthermore, the study revealed that Euclidean distance matching outperformed 

propensity score matching and stratified random sampling. However, it was noted that the 

choice of matching segments played a more significant role in producing a good matching 

group. 

Advantages: 

1. Accounts for population wide changes in energy usage (and therefore improves 

accuracy where/when these have taken place).  

2. Builds on CalTrack method. Any improvements made there will filter through and 

improve this method. 

Limitations: 

1. Requires very large dataset of non-participating homes including energy usage and 

contextual data. This currently doesn’t exist in a way that would allow wide 

adoption. 

2. Does not account for comfort take-back. 

3. Does not account for changes in occupancy. 

4. Previous trials of this method have used larger datasets that we will have available 

to us in the Alpha phase. 

 

 

5.2.3 Physics-informed model 

The power required to heat a home to a fixed temperature can most simply be modelled 

by the following equation: 

Power = (Internal Temperature - External Temperature) * Heat Transfer Coefficient 

The Heat Transfer Coefficient (also known as the Heat Loss Coefficient) represents the rate 

at which heat is lost from the home. This can be used in estimating energy savings. 

A key limitation of the CalTRACK approach is that it assumes occupant behaviours 

(particularly heating patterns) do not change after the retrofit. The counterfactual to which 

actual energy usage is compared represents energy use for pre-retrofit behaviours 

occurring in the post-retrofit property with post-retrofit weather. Comfort take-back is 

therefore ignored. The counterfactual corresponds to “How much would it have cost to 

heat the home the way I used to when I hadn’t had the retrofit?” 

See an example in the table below: 
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 Pre-retrofit Post-retrofit Counterfactual 

External 

Temperature 

9°C 11°C 11°C 

Internal 

Temperature 

18°C 19°C 18°C 

Fabric Heat Loss 200 W/K 100 W/K 200 W/K 

Heating Power 

Usage 

1800W 800W 1400W  

(savings: 600W) 

 

An alternative would be to create a counterfactual that consists of post-retrofit behaviours 

applied to the pre-retrofit property under post-retrofit weather. This intrinsically corrects 

for any changes to behaviour (e.g. comfort take-back). The counterfactual corresponds to: 

“How much would it have cost to heat the home the way I currently do if I hadn’t had the 

retrofit?” (see example below). 

 Pre-retrofit Post-retrofit Counterfactual 

External 

Temperature 

9°C 11°C 11°C 

Internal 

Temperature 

18°C 19°C 19°C 

Fabric Heat Loss 200 W/K 100 W/K 200 W/K 

Heating Power 

Usage 

1800W 800W 1600W 

(savings: 800W) 

 

This would involve three components: 

1. Create a model of pre-retrofit energy usage required to achieve different internal 

temperatures in different weather conditions (probably by estimating whole-home Heat 

Transfer Coefficient). 

2. Measure post-retrofit heating patterns (via internal temperature monitoring) and 

weather. 

3. Run post-retrofit heating patterns and weather through the model to produce 

counterfactual energy usage. 

Advantages: 

1. Solutions exist for estimating whole-home Heat Transfer Coefficient (HTC) from 

measured data (see SMETER), and these are more mature than direct metered energy 

savings solutions. They can involve different levels of monitoring – one solution 

demonstrated good accuracy using only smart meter data and weather, whilst others 

required internal temperature data, humidity, and more. See Appendix A for more 

synergies between SMETER and RetroMeter. 

2. The end-to-end metered energy solution can be modular, allowing any Heat Transfer 

Coefficient (HTC) estimation tool to be used within the methodology. This means that 

https://www.gov.uk/government/publications/smart-meter-enabled-thermal-efficiency-ratings-smeter-technologies-project-technical-evaluation
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homes with pre-existing internal temperature sensors could benefit from increased 

accuracy, but the methodology could be used on homes without temperature sensors as 

well, allowing broad applicability. 

3. Direct comparison of pre and post-retrofit HTC can be a part of the retrofit assurance 

process. 

4. Using actual occupancy patterns (based on post-retrofit internal temperature) rather 

than assumed occupancy may provide a more accurate sub-daily estimate of savings. 

5. Some HTC estimation solutions require only short periods of intensive data collection 

(rather than 12 months), which would allow a metered energy solution to work for homes 

where collecting 12 months of data pre-retrofit was impractical (e.g. those without smart 

meters). 

6. May account for external population wide changes if these result in changes to the 

internal temperature readings. (e.g. energy price rises result in reduced heating, meaning 

measured internal temperature is lower). 

Limitations: 

1. In the SMETER project, some of the better entries managed typical uncertainty/error in 

the HTC estimation range between 12-21%. This would propagate through the 

methodology, leading to at least this level of uncertainty in the estimation of savings. 

2. Changes to heating technology as part of the retrofit (e.g. moving from a boiler to a 

heat pump) will normally change the internal temperature profile of the home due to 

differences in the way those technologies operate. Requiring one technology to operate 

under the preferred mode for another technology when estimating the counterfactual 

might not be a fair comparison. (Boiler controls are often set on/off throughout the day, 

heat pumps are operated most efficiently when left on constantly with a small setback 

overnight)  

3. The measured internal temperatures do not correspond directly to the target internal 

temperatures of the occupants, which might lead to overstating the energy required for 

the alternative technology to achieve the occupant’s target temperature. For example, a 

home may be at 17°C at 5am because it is slowly warming up to reach the target 

temperature of 18°C at 7am, rather than because it needs to be at 17°C at that time. This is 

a fundamental limitation of this approach and would need appropriate consideration 

before employing it in retrofits where the heating technology has changed. Target 

temperatures could be used rather than actual internal temperatures, but these are much 

harder to obtain as they require interfacing with different thermostat systems, and they 

would also make the modelling required significantly more complex, so are not really 

practical at scale. 

 

5.2.4 Probabilistic 
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The significant differentiating feature of probabilistic models is their output. Rather than 

making a single prediction of energy use for each timestep, probabilistic models give 

predictions of the likelihood that the energy use will be within a certain range. There are 

many such probabilistic methods but here we will focus on quantile regression. 

 

In a quantile regression the model predicts the quantiles for energy use at each timestep. 

For example, using ventiles, 20 points would be output for each timestep. These would 

predict the energy usage for quantiles with 5% probability spacing. Such models are fit in a 

similar way to linear regression but separate fits must be done for each quantile.  

 

The benefit in using such a quantile regression does not come from improvements in 

accuracy or precision of the model predictions, but the additional understanding of the 

model uncertainty that comes from analysis of its outputs. For example, finding periods of 

higher model uncertainty and quantifying that uncertainty. 

 

One major issue with point modelling of metered energy savings is that of the double 

penalty effect. This was identified in the previous metered energy savings project as a 

major contribution to the model error. This method would not overcome this issue but it 

might allow further analysis of it, through better understanding of model uncertainties. 

 

CalTRACK documentation gives recommended approach for calculating uncertainty for 

portfolio aggregated studies. This also gives some indication of how this might be done 

for a single site.  

Sensei documentation gives an approach for estimating the uncertainty in the model. It is 

not clear if either of these models has built in uncertainty calculations.  

Data requirements are flexible, but energy and external temperature data are a 

requirement for both training (1 year prior) and evaluation period. Internal temperature 

could be used to improve the model and would be required to account for comfort take-

back. This method would not explicitly separate the heating from the other energy use. It 

would not account for external changes or changes in occupancy.  

5.3 Comparisons 

Summary and comparison of potential approaches is given in tabular form below:  

http://docs.caltrack.org/en/latest/methods.html#section-1-overview:~:text=4.3.%20Portfolio%20Uncertainty
https://zenodo.org/record/4695123#.ZFTLl3bMKUl
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Methodology Comfort 

take-

back 

Time-

resolution 

Systematic 

NREs 

Individual 

property 

NREs 

Data requirements Individual 

homes 

Existing 

tools 

Likely error? How hard to 

develop? 

CalTRACK 

daily 

No Daily No No 1 year pre-retrofit, 

daily energy, and 

hourly external 

temperature 

Maybe Yes Existing 

CalTRACK 

V2.0 ~ 30% 

Pre-existing, 

fairly simple to 

improve 

CalTRACK 

hourly 

No Hourly No No Corresponding 

months pre-and post. 

Hourly energy and 

external temperature 

Unlikely Yes Existing 

CalTRACK 

V2.0 ~ 90-

100% 

Pre-existing, 

fairly simple to 

improve 

Comparator 

(GRIDmeter) 

No Daily or 

hourly 

(based on 

CalTRACK) 

Yes No 1 year pre-retrofit, 

energy and external 

temperature. 

Large dataset of non-

retrofit homes  

required. 

Maybe Yes Should be 

better than 

CalTRACK 

Pre-existing, 

improving 

matching 

likely to be 

complex  

Physics-

informed 

(SMETER 

type) 

Yes Daily or 

hourly 

No No Energy data, external 

and internal 

temperature for a 

period (~1 winter 

month) or 1 year pre-

retrofit energy and 

external temperature 

Yes Partial 10-30% HTC 

calculation 

could be pre-

existing, but 

still significant 

work to 

integrate 

Probabilistic No Half-

hourly 

No No Half-hourly energy 

and weather data for 

1 year prior  

Maybe  No Prediction 

uncertainty 

quantified 

by model 

Quite hard 
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5.4 Options to consider 

In the table below we outline different methodology options considered, along with their 

advantages and limitations. All of the options outlined are valid for retrofits where the 

heating system starts as gas, and either remains gas or is changed to electrical heating  

with sub-metering of the electrical heating system post-retrofit. They all could produce 

property-level counterfactual with confidence intervals, but focus will be on portfolio level 

accuracy (as this is more feasible).  

The following section discusses the selected methodologies (highlighted in green) in more 

detail.
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OPTION COMBINED 

OPTIONS 

DATA MODEL ADVANTAGES LIMITATIONS 

 

1 – CalTRACK daily No SERL or 

Hildebrand 

or ESCs 

Living Lab 

CalTRACK daily for 

gas (and electric) 

Pre-existing and therefore 

low risk. 

Only works in smart 

metered homes. 

2 – CalTRACK daily + 

internal temperature 

No ESCs Living 

Lab 

CalTRACK daily with 

internal-external 

temperature added 

to model for gas (and 

electric) 

Comfort take-back via 

changes in average daily 

internal temperature. 

Only works in smart meter 

homes. 

1 year of internal 

temperature required pre-

retrofit. 

3 – CalTRACK hourly 

+ internal 

temperature 

No ESCs Living 

Lab 

CalTRACK daily for 

gas and hourly for 

electric with internal-

external temperature 

added to model 

Comfort take-back via 

changes in internal 

temperature. 

Only works in smart meter 

homes. 

1 year of internal 

temperature required pre-

retrofit. 

4 – CalTRACK hourly 

+ observed 

occupancy 

No SERL or 

Hildebrand 

or ESCs 

Living Lab 

CalTRACK daily for 

gas and hourly for 

electric. Occupancy 

post-retrofit used in 

determining 

counterfactual. 

Occupancy changes 

accounted for. 

Only works in smart meter 

homes. 

5 – Comparison based No SERL or 

Hildebrand  

Adapted GRIDmeter, 

daily for gas, hourly 

for electric 

External factors accounted for 

by comparison with groups of 

similar homes. 

Only works in smart meter 

homes. 

Requires ongoing 

availability of large 

quantities of comparison 

group data. 
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6 – Physics based, 

smart meter only 

No SERL or 

Hildebrand 

or ESCs 

Living Lab 

Open-source HTC 

calculation that uses 

only smart meter and 

external temperature 

data, combined with 

model to map HTC + 

internal and external 

temperature to 

energy usage 

Intrinsically corrects for 

comfort take-back.  

Can use alternative HTC 

measurements to avoid need 

for 1 year smart meter data. 

Only works in smart meter 

homes.  

Smart meter-based HTC 

may be harder/less 

accurate than HTC with 

internal temperature 

7 – Physics based 

including internal 

temperature 

No ESCs Living 

Lab 

Pre-existing solutions 

(or in-house 

equivalent) used to 

calculate HTC. 

Intrinsically corrects for 

comfort take-back. Works in 

homes without 1 year smart 

meter data. 

Requires kit installation 

pre-retrofit. 

 

8 – Physics based (no 

internal temp) + 

CalTRACK variant 

Combines 

options 1 

and 6 

SERL or 

Hildebrand 

or ESCs 

Living Lab 

N/A Intrinsically corrects for 

comfort take-back.  

Could account for occupancy.  

See options 1 and 6. 

9 – Physics based (no 

internal temp) + 

comparison based 

Combines 

options 1, 5 

and 6 

SERL or 

Hildebrand 

N/A Intrinsically corrects for 

comfort take-back.  

Could account for occupancy.  

External factors accounted 

for. 

See options 1, 5 and 6. 

10 – Physics based 

(with internal temp) 

+ CalTRACK variant 

Combines 

options 3 

and 7 

ESCs Living 

Lab 

N/A Intrinsically corrects for 

comfort take-back.  

Could account for occupancy. 

See options 3 and 7. 

11 – Physics based 

(with internal temp) 

+ comparison based 

Combines 

options 3, 5 

and 7 

ESCs Living 

Lab 

N/A Intrinsically corrects for 

comfort take-back.  

Could account for occupancy. 

External factors accounted 

for. 

See options 3, 5 and 7. 
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5.5 Selected methodologies 

The requirement for 1 year of internal temperature prior to retrofit is impractical in many 

cases, and would dramatically restrict the applicability of the methodology to real world 

retrofit programmes. As a result, options that require this have been eliminated from 

consideration. 

The requirement for ongoing availability of large quantities of comparison group data is 

also a key challenge. This data is not currently available (unlike in the USA), and as such 

this methodology may not be practical in the short term. However, the comparison-based 

methodology is probably the best way to account for external effects which, as Covid-19 

and the energy crisis have shown, threaten to fundamentally undermine other 

methodologies. 

As a result, we propose taking forward option 9 to Alpha - a combination of options 1, 5 

and 6. This is because each option has significant downsides in isolation which are 

addressed through the combination, but also because the failure of one or two of the 

options due to insurmountable barriers (e.g. data availability for comparisons) would still 

leave the project with a viable solution. 

These solutions also synergise nicely because they all only require smart meter data plus 

weather pre-retrofit - i.e. they do not require pre-retrofit internal temperature data. This is 

an advantage, but it also means they do not work for non-smart meter properties (which 

make up ~50% of homes). This needs to be considered, and is partially mitigated by the 

fact that option 6 could work with other existing HTC estimation methodologies that aren’t 

dependent on historical smart meter data. 

The below diagram illustrates how the solutions layer together. 

Option 1 – CalTRACK daily 

This option utilizes the existing CalTRACK daily methodology. As such there is low delivery 

risks, given that the algorithm and code are already largely in existence. Despite this, the 

method is not without its limitations, as it is unable to account for external factors or 

comfort take-back. However, any improvements made to this methodology will also 

enhance Option 5. 

 Option 5 – Comparison-based 

This option incorporates comparison or matching methods into the existing CalTRACK 

daily framework. This augmentation allows the system to correct for external factors. 

However, it would require significant effort to adapt and validate the GridMeter code and 

methodology for UK homes. The delivery risk for this option is moderate during the Alpha 

phase, due to potential insufficiencies in the matching methodology given the limited 

number of homes available (~10k). Consequently, this could lead to this solution 

performing worse than Option 1, rather than better. During the Beta/rollout phase the 

delivery risk is high due to the uncertainty around the ongoing availability of data for 

comparison groups (as the project would no longer be research, access to some datasets 

may be restricted). Despite this, if successful, Option 5 would replace Option 1, resulting in 
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a methodology that is more robust to external factors, such as energy price changes. In the 

event of failure, we would revert to Option 1. 

 Option 6 – Physics-based, smart meter only 

Option 6 offers a physics-based, smart-meter-only solution. This method combines a data-

driven estimate of pre-retrofit heat loss (HTC) with post-retrofit internal temperatures to 

produce a counterfactual that adjusts for comfort take-back. This counterfactual is then 

compared to the counterfactual from Option 5 (or 1) to split the metered energy savings 

into 'realised energy savings' and 'energy savings taken as comfort’. However, significant 

effort is required to develop both the smart meter only HTC calculation and the model to 

translate HTC plus internal temperature into energy usage. The delivery risk for Alpha is 

high, as the smart meter only HTC calculation may not perform adequately or may require 

more effort than is available within the Alpha timelines. For Beta, the risk is moderate as it 

requires the collection of internal temperature post-retrofit, which could increase the 

monitoring complexity and fragility of the data pipeline. If successful, Option 6 can be used 

in combination with Option 5 (or 1) to quantify comfort take-back, or it can serve as a 

standalone measure when smart meter data does not exist. In the case of failure, we would 

revert to Option 5 (or 1). 

This approach means that at the end of Alpha we can expect to have: 

Worst Case: A daily counterfactual methodology that is integrated into an end-to-end 

data pipeline and works adequately for gas heated homes (or gas to electrical heating 

retrofits) which have 12 months of pre-retrofit smart meter data – but which cannot 

account for external factors (e.g. energy price changes). 

Best Case: A modular counterfactual methodology that is integrated into an end-to-end 

data pipeline and works well for gas heated homes (or gas to electrical heating retrofits) 

which have 12 months of pre-retrofit smart meter data (correcting for external factors and 

estimating comfort take-back). It will also have the ability to utilise alternative HTC 

measurement tools to sidestep the need for 12 months of pre-retrofit smart meter data 

(but the resulting metered energy savings estimates would not separate out comfort take-

back). 
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5.6 Additional Considerations 

5.6.1 Data Pipelines 

Whilst the focus of the above is on evaluation of the underlying algorithms, the 

surrounding data engineering and software interface are equally key. Building an end-to-

end data product that includes pipelines for retrieving, cleaning and combining smart 

meter and weather data will be important. We will also need to consider processes for 

detecting and resolving broken data connections or other monitoring issues. 

5.6.2 User Interface and Platform 

Successful deployment of this as a final product will require software development to 

produce an effective platform with user interfaces for registering homes, connecting smart 

meters and other monitoring devices, reviewing savings on individual homes and 

portfolios etc. 

5.6.3 Model Confidence/Uncertainty 

In order to develop robust pay-for-performance business models (as well as individual 

retrofit assessments), quantification of uncertainty and confidence in model results will be 

required. The level of scientific rigour required will be dependent on stakeholder needs 

and business models. Clearly articulated indicators of uncertainty and confidence may be 

of more value to many stakeholders than more complex (but more robust) assessments. 

More examination of this will be required in Alpha and Beta phases. 

5.6.4 Availability of Comparison Groups 

Data privacy means the public availability of smart meter data for individual properties for 

use as comparators is likely to remain extremely limited in the near to medium term. There 

are two likely routes to resolving this for Beta phase and afterwards: 

1. RetroMeter users submit their smart meter data to a trusted intermediary with 

access to large quantities of smart meter data who then performs the matching and 

returns the anonymised counterfactual. This would require significant investment in 

setting up and running a secure and performant system for this (and leaves the 

matching in the hands of a single party). 

2. A larger number of aggregated counterfactuals (e.g. 20-50 homes) are published 

openly by an organisation with access to smart meter data (e.g. SERL) to enable 

public matching to comparator groups. This is likely to be easier to arrange and so 

is probably to be preferred (as long as it performs similarly). This will be explored 

further during Alpha. 
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6. Appendix A 

Synergies between SMETER and RetroMeter: 

RetroMeter potential 

synergy streams 

SMETER 

Data Warehouse • Opens prospect of incorporating thermal 

performance improvement (pre and post retrofit) as 

another performance measure into the national 

database of domestic home efficiency and EE 

project outputs. This will leverage on data collected 

from the SMETER sensors used for indoor air 

temperature, gas and electric demand and relative 

humidity.  

• When targeting homes with specific energy 

improvement assets or offers, the HTC may be a key 

factor in determining the suitability of specific 

technologies, such as heat pumps. The “baseline” or 

“improved” HTC at the time of electrification of 

heating technologies will also be a key factor for 

determining the potential load profile changes that 

arise from fuel switches and energy improvements. 

• Connecting HTC to qualitative assessments of 

occupant comfort and the “value” they derive from 

their residential setting en-masse may also help 

with the valuation of personal comfort as well as 

health outcomes. 

Standard Methodologies The HTC is predicted as part of an Energy Performance 

Certificate (EPC) for new homes (using the SAP method) 

and for existing homes (using the RdSAP method). There is 

a potential opportunity to use the CALTrack methodology 

alongside HTC for existing homes to help to disaggregate 

changes to heating behaviour and other energy end uses. 

This can be helpful for modelling disaggregated savings or 

for estimating the savings “absorbed” by comfort take-

backs where additional data is present. 

Baselining CalTRACK • UK Data Archive: 29 houses with gas meters and 

possible SMETER follow up data (100 homes part of 

GHG dataset) can be used as data points in 

improving CalTRACK baseline. 

• Understanding HTC will improve the correlation of 

internal air temperature to outdoor air temperature 
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(i.e. Heating Degree Days) with the heating 

component of energy consumption, which could be 

used to improve CalTRACK baseline.  

Improving CalTRACK 

Calculation  

SMETER’s shared measured HTCs, dwelling characteristics 

and ancillary measurement for homes can be used as part 

of the data being collected to improve the CalTRACK 

method: 

• SMETER can help to understand the impact of 

energy improvements on load profiles.  

• Although HTC alone cannot inform us of comfort 

take-backs, when used in conjunction with internal 

temperatures data / set points it can assist retrofit 

evaluators in determining the magnitude and timing 

of savings “offset” by comfort take-backs, and 

whether these would have been higher or lower had 

the intervention not occurred. 

• From discussion: doesn’t consider “real” events in 

the home (comfort take-back, occupant behaviour) 
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7. Appendix B 

This was included in section 3 above, but as we are no longer considering a probabilistic 

method, it has been removed for clarity but is kept here in an appendix for completeness. 

Probabilistic methods 

Since behaviour in a home varies significantly on an hourly basis, existing hourly 

methodologies typically struggle to accurately model energy usage (as found by the MES 

project(Young et al., 2022)). One option is to develop a new type of counterfactual that 

leverages probabilistic forecasting methods. Because probabilistic forecasts produce more 

than one estimate, the evaluation metrics mentioned above would not be applicable. 

The probabilistic forecasts seek to accurately represent the probability distribution of the 

energy consumption at any given time-step, rather than predicting a specific value. 

However, in the observed data against which the forecast will be evaluated, there is only 

one true observation available. Therefore, probabilistic forecasts are evaluated based on a 

scoring function whereby the minimum score can only be achieved by the true distribution, 

as discussed here(Haben, Holderbaum and Voss, 2023). 

Other previous work(Bjerregård, Møller and Madsen, 2021) provides an overview of 

evaluation methods for multi-variate probabilistic forecasts which remains an active field of 

research. They evaluated three major scoring functions and came to the following 

findings:3 

 

Due to these findings, they recommend applying multiple rather than just a single scoring 

rule, specifically to apply VarS to the full, multivariate forecast, while simultaneously 

evaluating its marginal densities by either univariate CRPS or LogS, depending on whether 

the shapes of the tails are considered important (LogS) or not (CRPS). Finding from other 

work (Ziel and Berk, 2019) brings a similar conclusion, recommending that the “energy 

 

3 Vars: Variogram score of order p 

LogS: Logarithmic score 

CRPS: Continuous ranked probability score 

https://es.catapult.org.uk/report/metered-energy-savings/
https://es.catapult.org.uk/report/metered-energy-savings/
https://link.springer.com/book/10.1007/978-3-031-27852-5
https://link.springer.com/book/10.1007/978-3-031-27852-5
https://arxiv.org/abs/1910.07325
https://arxiv.org/abs/1910.07325
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score” which performed best in their simulation is combined with other scoring functions 

such as the CRPS or the bivariate copula energy scores to prevent heavy reliance on single 

evaluation metric only. 

Due to the ongoing development of appropriate evaluation methods for probabilistic 

forecasts it is to be expected that the literature applying probabilistic forecasting to the 

problem of MES will be extremely limited. Therefore, opportunities to compare such a 

model’s performance to any existing literature will be very limited. 
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8. Licence/Disclaimer 

 

Energy Systems Catapult (ESC) Limited Licence for RetroMeter – Methods Development 

ESC is making this report available under the following conditions. This is intended to 

make the Information contained in this report available on a similar basis as under the 

Open Government Licence, but it is not Crown Copyright: it is owned by ESC. Under such 

licence, ESC is able to make the Information available under the terms of this licence. You 

are encouraged to Use and re-Use the Information that is available under this ESC licence 

freely and flexibly, with only a few conditions. 

 

Using information under this ESC licence 

Use by You of the Information indicates your acceptance of the terms and conditions 

below. ESC grants You a licence to Use the Information subject to the conditions below. 

 

You are free to: 

• copy, publish, distribute and transmit the Information 

• adapt the Information 

• exploit the Information commercially and non-commercially, for example, by combining 

it with other information, or by including it in your own product or application. 

 

You must, where You do any of the above: 

• acknowledge the source of the Information by including the following 

acknowledgement: 

• “Information taken from RetroMeter – Methods Development, by Energy Systems 

Catapult” 

• provide a copy of or a link to this licence 

• state that the Information contains copyright information licensed under this ESC 

Licence. 

• acquire and maintain all necessary licences from any third party needed to Use the 

Information. 

 

These are important conditions of this licence and if You fail to comply with them the 

rights granted to You under this licence, or any similar licence granted by ESC, will end 

automatically. 

 

Exemptions  

This licence only covers the Information and does not cover:  

• personal data in the Information 

• trademarks of ESC; and  

• any other intellectual property rights, including patents, trademarks, and design rights. 
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Non-endorsement  

This licence does not grant You any right to Use the Information in a way that suggests any 

official status or that ESC endorses You or your Use of the Information.  

 

Non-warranty and liability  

The Information is made available for Use without charge. In downloading the Information, 

You accept the basis on which ESC makes it available. The Information is licensed ‘as is’ 

and ESC excludes all representations, warranties, obligations and liabilities in relation to the 

Information to the maximum extent permitted by law.  

 

ESC is not liable for any errors or omissions in the Information and shall not be liable for 

any loss, injury or damage of any kind caused by its Use. This exclusion of liability includes, 

but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or 

exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost 

business. ESC does not guarantee the continued supply of the Information. 

 

Governing law  

This licence and any dispute or claim arising out of or in connection with it (including any 

noncontractual claims or disputes) shall be governed by and construed in accordance with 

the laws of England and Wales and the parties irrevocably submit to the non-exclusive 

jurisdiction of the English courts.  

 

Definitions  

In this licence, the terms below have the following meanings: ‘Information’ means 

information protected by copyright or by database right (for example, literary and artistic 

works, content, data and source code) offered for Use under the terms of this licence. ‘ESC’ 

means Energy Systems Catapult Limited, a company incorporated and registered in 

England and Wales with company number 8705784 whose registered office is at Cannon 

House, 7th Floor, The Priory Queensway, Birmingham, B4 6BS. ‘Use’ means doing any act 

which is restricted by copyright or database right, whether in the original medium or in any 

other medium, and includes without limitation distributing, copying, adapting, modifying 

as may be technically necessary to use it in a different mode or format. ‘You’ means the 

natural or legal person, or body of persons corporate or incorporate, acquiring rights 

under this licence. 
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