Pelectricity

Bringing energy to your door

青川市东公常

Innovation Learning Event

Wednesday 4 July 2018

SMART STREET

Project update

Ben Ingham Innovation Engineer

Pelectricity

Bringing energy to your door

書圖書合書

Stay connected... F B C in www.enwl.co.uk Background

Customer demand could cause voltage to dip below statutory limits

cause voltage to exceed statutory voltage limits

across the load range and optimises power flows

Stabilised voltage can be lowered making our network and customers' appliances more efficient

Project overview

Trial overview

Six primary substations
67,000 customers
11 HV circuits – five closable HV rings

Three pole-mounted HV capacitors Three ground-mounted HV capacitors

38 distribution substations Five OLTC transformers

Five substation capacitors 79 LV circuit capacitors

Quantified the voltage optimisation and loss reduction techniques used in Smart Street Proved the benefits of meshed networks and the effects on power quality Quantified the cost benefits and carbon impact related to the Smart Street solution

TNEI provided research support and consultation for the duration of the trials

High level conclusions

Network benefits	Benefits from reduced losses and deferred reinforcement if	Customer benefits
Alleviate network issues Facilitate energy savings Reduce network losses	Smart Street investment costs low Demand growth and LCT uptake uncertain	Economic benefits per customer independent on network type

Ř

High level conclusions

黄

Optimisation benefits (energy)	Optimisation benefits (losses)	Trade off between loss and energy consumption reduction	Carbon benefits
6-8% voltage reduction 5.5 – 8.5% energy reduction All networks similar energy reduction	Up to 15% loss reduction Rural network has highest loss reduction	Does exist but depends on load composition Energy consumption dominates Total energy reduction independent of weightings applied	Electricity system emissions reductions of 7% to 10% may be possible with a full application of Smart Street

Overall impact of Smart Street trials

Perception of power quality	Experience of SDIs	Fault data	Smart Street benefits	The hypothesis
				?
 Perceptions driven by exposure to power cuts Minimal differences re frequency and/or duration On balance positive changes 	Not spontaneously associated with a reduction in power quality Do not negatively impact customers' power quality perceptions	SDIs were generally linked to network faults unassociated with the trials or with equipment installation	Generally customers perceived the Smart Street project to have positive or at least neutral implications	Customers in the trial area have not perceived any changes in their electricity supply when the Smart Street method is applied

Outcomes

	A B C		CO ₂
Monitored and actively optimised LV network	Proven that techniques save energy	Potential deferment of reinforcement	Associated carbon equivalent savings

Losses vs energy savings

Meshing

14

Reduction of approx 5% at HV level

Reduction of 7 – 10 % at LV level (network dependent)

Significant merit in reducing UK carbon emissions, particularly through reducing network losses and customer energy use

Policy changes

黄田、赤赤木

LV Design	OLTC	Connections	Monitoring
Voltage drop not as severe as expected	Electricity North West specification modified to allow for use of OLTCs	Update connection process for LCTs	Fit monitoring to identify clusters

Technology

Lynx housing to be redesigned Monitored network being retained

Integration with new NMS

е	innovation@enwl.co.uk
	www.enwl.co.uk/innovation
	0800 195 4141
Y	@ElecNW_News
in	linkedin.com/company/electricity-north-west
f	facebook.com/ElectricityNorthWest
i ت	youtube.com/ElectricityNorthWest

Thank you for your time and attention

*

X