Voltage Management on Low Voltage Busbars

Linwei Chen
PhD Student in Electrical Energy and Power Systems
linwei.chen@postgrad.manchester.ac.uk

B4 Council Chamber, Sackville Street Building – 3rd Oct, 2014
LV Network Solutions Project – Dissemination Event
Outline

- Project objectives
- Modelling of voltage control devices and LV networks
- Analysis of network site trial monitoring data
- Voltage regulation studies
- Network Capacity studies
- Conclusions
Project Objectives

- This project deployed a range of voltage management methods and techniques across several distribution substations within Electricity North West Limited.

- These technologies were assessed in terms of their ability to effectively regulate line voltage in real-time in a safe and economical manner.

- In addition, the ability of compensating devices to correct for power factor and feeder power quality was also assessed.
Options of voltage management in LV networks

- Voltage regulation devices
 - Two distribution transformers with on-load tap changers (OLTCs) (from MR)
 - Two voltage optimisers (from powerPerfector Plus)

- Voltage/Power quality
 - Two active harmonic filters (from ABB filters)

- Reactive compensation
 - LV capacitors (from ABB)

- Energy storage device (through simulations)
Modelling of Devices and Networks

- Active filter
- powerPerfector Plus unit
- Distribution transformer with OLTC
- LV network
Modelling of Active Filter

- Model was developed in PSCAD/EMTDC based on the control algorithm in [1]

Modelling of Active Filter (cont.)

- Active filter in PSCAD

- Harmonic load
- IGBTs for PWM
- Waveform plots
- Calculation of p,q
- Harmonic current calculation
- PWM control block
Modelling of powerPerfector Unit

- The unit was connected at the distribution transformer LV side to regulate the voltage on one LV feeder.
Modelling of powerPerfector Unit (cont.)

- Model in PSCAD

(a) Step down function

(b) Boost function
Modelling of powerPerfector Unit (cont.)

- The powerPerfector Plus unit is designed to maintain a stabilised output voltage for the load.
Modelling of Distribution Transformer with OLTC

- MR voltage regulator TAPCON 230 pro was installed to control OLTC.
Modelling of LV Networks

- Simulate six LV networks

Dunton Green
Edge Green Lane
Greenside Lane
Howard St
Leicester Ave
Landgate
Modelling of LV Networks (cont.)

- Each network consists of several LV feeders.
Modelling of LV Networks (cont.)

- To study the performance of voltage management devices, each LV feeder has been simplified and modelled in PSCAD.

Voltage profile of Leicester feeder (in OpenDSS)

Voltage profile of Leicester feeder (in PSCAD)
Network Site Trial Monitoring Data

- Active filter site trial
 - Dunton Green substation
 - Howard Street substation

- powerPerfector (pP) site trial
 - Greenside Lane substation
 - Edge Green Lane substation

- Distribution transformer with OLTC site trial
 - Landgate substation
 - Leicester Avenue substation
Active Filter Site Trial

- Investigate the ability to filter out network harmonic currents

Filter switched off

Filter switched on
powerPerfector Site Trial

- Assess the ability to decrease/increase feeder voltage

Step Down Mode

Boost Mode
Distribution transformer with OLTC Site Trial

- OLTC had performed approximately 80 times in a 3 month period
Voltage Regulation Studies

- Assess the effectiveness of control devices on regulating voltage
 - Distribution transformer with OLTC
 - LV capacitor
 - Energy storage device

- Investigate the LV feeders with different load levels and photovoltaic generator (PV) penetration
Distribution Transformer with OLTC

- With large PV penetration, employ OLTC transformer to reduce the voltage at the substation so that the voltages along the feeder could be maintained within the limits.

-4% tap position

without PV penetration

with PV penetration
Distribution Transformer with OLTC (cont.)

- The OLTC transformer is able to reduce or increase the substation voltage under different network conditions.

at high PV outputs

at reduced PV outputs
LV Capacitor

- The installation of capacitor banks on the feeder could produce reactive power to compensate the voltage drops.

![Graphs showing End of feeder voltage (pu) for different capacitor sizes and installations.](image)
Energy Storage Device

- When the PV generation is high while demand is low, the energy storage devices could be charged to absorb the excess power.

(a) without storage

(b) with storage installed at mid-point
Energy Storage Device *(cont.)*

- The storage unit can be configured to absorb the excess power generated by PVs and release the power during periods of peak demand.
Network Capacity Studies

- Investigate which solution increases more network capacity while maintaining the voltage level within the statutory limits.
Conclusions

- Establish learning on a range of alternative techniques for management of voltages on low voltage networks
- Deployment of new technology on the network for improved voltage regulation and measurement of the effect on voltage profiles in response to changes in demand
- Assessment of voltage management device effectiveness
- Investigate the changes in network capacity with different voltage management techniques
Thanks for your time