Demand scenarios and innovation projects at Electricity North West

Dr Geraldine Bryson and Dr Rita Shaw

Pelectricity

Bringing energy to your door

Stay connected... **F III III III** www.enwl.co.uk

Introducing Electricity North West

£12 billion of network assets

56 000 km of network ● 96 bulk supply substations 363 primary substations ● 33 000 transformers

	NORW∃B	United Utilities		Ť f	Felectricity north west
1948	1990	1995	2000	2007	2010
Electricity national- isation: North West Electricity Board	Privatisation: Norweb plc	North West Water takeover of Norweb: United Utilities	Norweb supply business sold	Sale of United Utilities Electricity to private investors	Acquisition of UU Electricity Services:

All large generators, suppliers and networks are regulated

But network businesses are the only ones with price regulation

Making a positive difference for energy consumers

RIIO regulatory framework

RIIO =

Revenue = Incentives + Innovation + Outputs

> ED1 = Electricity Distribution 14 DNO areas Eight years

£1.8Total to beBILLIONspent on the
network2015 - 2023

Some of our output commitments in RIIO 彙 II 贵

Customer service	Environment	Social	Safety	Reliability
90% complaints resolved in one day	Reduce carbon footprint by 10%	Improve services for vulnerable and priority service register customers	Site security investment	Maintain overall network health Improve overall reliability

How big should our network be?

GSP, BSP and primary substations	Rest of network = HV feeders, distribution subs, LV feeders	

Metered load in each half hour Affected by weather and generation Manually identify the 'normal' annual peak The 'Load Allocation' system *estimates* load in each half hour

Why could demand go up?

Why could demand fall?

Past electricity demand (energy)

... And 2015 central projection

Significant uncertainty, so not just a single best-view

Plausible combination of:

Background trends – econometric and policy analysis

Incremental effect of electric vehicles and heat pumps

Electricity North West scenarios 2016

Annual update requirement – methodologies being updated

'ATLAS' project expanding beyond focus on peak demand

Views of future demand and generation affect our plans for network capacity

The network operator 'Trilemma'

Smart solutions are the key to unlocking this puzzle

Before RIIO-ED1			RIIO-ED1		
Innovation Funding Incentive	Low Carbon Networks Fund Tier 1	Low Carbon Networks Fund Tier 2	Network Innovation Allowance	Network Innovation Competition	
0.5% of price control turnover (£2m/pa)	0.5% of price control turnover Small scale demonstration	Central fund for big projects	Replace IFI & LCN Fund T1 0.7% turnover (£3m/pa)	Central fund for big projects	
Number of projects					
Discretionary Award	TIER 2 /	NIC	R 1 / NIA	novation Funding Incentive	
Value and oversight					

Our innovation strategy

Collaborative partnerships with SMEs, universities and National Grid

Capacity to Customers unlocks latent capacity on the electricity network

CLASS is seeking to demonstrate that electricity demand can be managed by controlling voltage...without any discernible impacts on customers

Smart Street

Low cost ● Quick fit ● Minimal disruption ● Low carbon ● Low loss
 Invisible to customers ● Faster connection of low carbon technologies

Respond is the first UK demonstration of an active fault level management solution that avoids traditional network reinforcement

Celsius

Seven smaller scale projects – £6 million invested

Low voltage network solutions

Voltage management on low voltage busbars

The 'Bidoyng' smart fuse

Low voltage integrated automation

Low voltage protection and communications

Fault current active management

Combined online transformer monitoring

Leading or supporting £16 million of NIA projects so far

Asset risk optimisation

Combined on-line transformer monitoring

Demand scenarios / ATLAS

Distribution asset thermal modelling

Sentinel

Avatar

VOLL

Smart Grid Forum work stream 7

Overhead line ratings

Bidoyng smart fuse - single-shot autorecloser

KELV/TEK

WEEZAP - world leading LV vacuum circuit breaker

Working with University of Manchester to develop economic methodology

DSR

<u>Reinforcement</u>

Net present cost (x- axis is cost, y-axis is probability)

DSR is always cheaper, but with greater uncertainty in total cost (width of distribution)

Cost (£)

е	futurenetworks@enwl.co.uk
	www.enwl.co.uk/innovation
 Control 	0800 195 4141
y	@ElecNW_News
in	linkedin.com/company/electricity-north-west
f	facebook.com/ElectricityNorthWest
	youtube.com/ElectricityNorthWest

Thank you for your time and attention