

$\label{eq:calculation} Calculation of the settings \\ for an I_{S}\mbox{-limiter measuring and tripping device}$

by Karl-Heinz Hartung and Volker Grafe

July 2011

ABB AG Calor Emag Medium Voltage Products

Postal Address: Postfach 10 12 20 40832 Ratingen Germany

Visiting Address: Oberhausener Straße 33 40472 Ratingen Phone: +49 2102 12- 0 Telefax: +49 2102 12- 1777 Internet: www.abb.de/mittelspannung Head Office: Mannheim Registry Court: Mannheim Comm. Register: HRB 4664 VAT: 38180/10046 VAT-Id: DE143840362

Chairman Supervisory Board: Dipl.-Ing. Bernhard Jucker Members of the Management Board: Dipl.-Ing. Dr. Peter Terwiesch (Chair.) Dipl.-Volkswirt Hans-Georg Krabbe Dr.-Ing. Martin Schumacher Dipl.-Kfm. Markus Ochsner Bank Details: UniCredit Bank AG, München BIC: 700 202 70 Account-No.: 5 726 700 IBAN: DE34 7002 0270 0005 7267 00 SWIFT: HYVEDEMM

Commerzbank AG, Ratingen BIC: 300 800 00 Account-No.: 3 020 903 IBAN: DE87 3008 0000 0302 0903 00 SWIFT: DRESDEFF

The previously calculated tripping value I_T represents an rms value for the short-circuit current where the Is-limiter has to trip at the first current rise. In order to determine whether tripping is necessary immediately after a short-circuit has occurred, the Is-limiter's measuring and tripping device constantly monitors the instantaneous value (i) and the rate of rise (di/dt) of the current through the I_s-limiter. The I_s-limiter trips when the rate of current's rise (di/dt) reaches or exceeds a specified level $(di/dt)_T$, while the current flowing through the Is-limiter has instantaneous values between i₂ (lower measuring range limit) and i₁ (upper measuring range limit). This limit for the rate of current's rise $(di/dt)_T$ and the measuring range limits i_2 and i_1 are called setting values; they are representing instantaneous values.

Selection of the measuring range limits i₁ and i₂

The values for i_1 and i_2 are determined by the conditions at the location where the I_s-limiter is installed (e.g. operating current, maximum short-circuit current, tripping value) and the type of the I_s-limiter. The lower measuring range limit i_2 is, for example, to be selected as approx. 1000 to 3000 Amperes above the peak value for the operating current. The measuring range (i_1 - i_2) is in general 1000 A to 4000 A.

Calculation of the rate of current's rise

When the tripping value I_T (rms) and the measuring range limits i_1 and i_2 (instantaneous values) are

known, the rate of current's rise within the measuring range $(i_2 \text{ to } i_1)$ is then to be calculated for all short-circuit times.

Figure 1 shows the development of current when connecting to an ohmic-inductive circuit ($\cos\varphi = 0.15$) which is typical for short-circuits in medium voltage systems, at various switching angles ψ ; as a reference, the voltage curve is also given

Figure 1

The extreme values for the rate of current's rise within the measuring range occur for the two limit cases (short-circuit current with full and without any DC component); therefore, only these two cases are displayed in figure 2.

Above the currents' curves, the curve for the rate of rise of both currents is shown in dashes, and only those parts of the curve which indicate the rate of rise within the measuring range are drawn in a continous style.

In order to determine the rate of current's rise to be used as a setting value, for each of the two current curves (with and without DC component) the maximum value of the rate of current's rise has to be calculated while the respective instantaneous value of the current is within the measuring range. In general as per figure 2, these are the rate of current's rise at the upper measuring range limit (i_1) for the current i_0 and the rate of current's rise at the lower measuring range limit (i_2) for the current i_{90} . The smaller of these two values gives then the setting rate of current's rise (di/dt)_T.

The rate of rise for the two current curves (with and without DC component) within the measuring range $(i_2 \text{ to } i_1)$ is calculated with equations (1) and (2).

Current course in general form

$$i = \hat{i} \left[\sin \left(\omega t + \psi - \phi \right) - e^{-\frac{R}{X} \bullet \omega t} \bullet \sin \left(\psi - \phi \right) \right] \quad (1)$$

$$i \implies$$
 Peak value of the tripping value
($\hat{i} = I_T \bullet \sqrt{2}$)

 $\phi \implies$ Phase angle between voltage and shortcircuit current

(φ can be calculated from tg $\varphi = \frac{X}{R}$)

- $\psi \Rightarrow$ Switching angle at which the short-circuit occurs, in relation to the source voltage $(\psi = 0 \Rightarrow$ short-circuit occurs at voltage zero)
- $i_0 \Rightarrow$ Current course with full DC component (short-circuit occurs in the voltage zero, where $\psi = 0^\circ$)
- $i_{90} \Rightarrow$ Current course without DC component (short-circuit occurs almost at the maximum voltage, where $|\psi - \varphi| = 0^{\circ}$)

Rate of rise of current in general form

$$\frac{di}{dt} = \hat{i} \bullet \omega \left[\cos \left(\omega t + \psi - \varphi \right) + \frac{R}{X} \bullet e^{-\frac{R}{X} \bullet \omega t} \bullet \sin \left(\psi - \varphi \right) \right]$$
(2)

With a computer program, the values for ωt at the measuring range limits can be calculated by using equation (1) $(i_2 \rightarrow \omega t_2, i_1 \rightarrow \omega t_1)$. Then, for equation (2), the maximum value of the rate of current's rise has to be determined while the instantaneous value of the current is within the measuring range, i.e., $\omega t_2 \leq \omega t \leq \omega t_1$.

This calculation must be done for both current courses (with and without DC component); the lower of these two thus obtained values of the rate of current's rise leads to the setting rate of current's rise $(di/dt)_{T}$.