
1 The Outcome Of The Project 

1.1 Summary of outcomes 

The REFLECT project has developed credible methodologies and associated prototype tools 
for the probabilistic long-term forecasting of EV charging active power demand that can 
frame local EV charging uncertainties across the whole EHV network of Electricity North 
West.  

The following works on regional data requirements, methodologies and modelling tools have 
been disseminated and are publicly available on the projects website (online: 
www.enwl.co.uk/reflect): 

i. the Dataset report (see section 8.2) that describes what local data and associated 
granularity required to frame local uncertainties in the various types of EV charging; 
and, 

ii. the Tool Specification report (see section 8.3) that describes the methodology and 
associated tools developed that use the local data as inputs and apply probabilistic 
analysis to model EV charging per primary substation. 

Both reports have been delivered by Element Energy and have considered modelling 
recommendations provided by Electricity North West, especially around the introduction of 
the concept of micro-scenarios and the focus of probabilistic analysis on the location type of 
EV charging (ie, home, public on street, work, destination and rapid en-route).  

Following the development of the REFLECT methodology and prototype tools in Python, we 
used the tools with inputs from our Electricity North West DFES 2020. The analysis carried 
out has revealed that local characteristics can result in different EV profiles both for the 
average risk and extreme cases under uncertainty. Results are discussed in section 8.4 of 
this report. 

In section 8.6 we present how the proposed use of micro-scenarios that have been 
introduced in the REFLECT project can be used in decision making tools such as our Real 
Options CBA (ROCBA) tool developed in Demand Scenarios NIA project. To do that, we 
require manual processing of intermediate results of the REFLECT methodology, which is 
described in section 8.5. In practice, the developed Python tool allows use an automatic or 
manual process for the selection of micro-scenarios, depending on the planning process 
associated with the EV charging forecasts. 

Our REFLECT project has focused on uncertainties around EV charging, but at the same 
time the developed modelling framework using probabilistic analysis on top of the network 
planning scenarios (eg, DFES) can be used in the future to model other key forecasting 
building blocks. This is particularly useful for building blocks where the existing DFES 
scenario frameworks cannot capture all critical uncertainties. Therefore, as described in 
section 8.6 the REFLECT modelling approach can be applied in future works to: 

a. enhance the use of scenarios in network planning to capture all critical 
uncertainties not currently framed by DFES scenarios; and, 

b. consider probabilities and likelihood metrics in DFES scenarios used in 
network planning. 



1.2 Regional Datasets  

Regional datasets and projections have been produced by Element Energy to inform the 
modelling of EV charging on Electricity North West’s EHV network. The datasets produced 
and their purpose in the modelling of EV charging demand can be summarised as follows: 

 Car and van ownership / current EV uptake: used to inform modelling of EV uptake. 
 Off-street parking access: used to determine the scale and location of domestic EV 

charging demand. 
 Rural / urban classification: used to inform travel patterns of drivers, as rural drivers 

tend to drive higher daily distances than urban drivers. 
 Vehicles commuting to work: used to identify where commuters live, as they have very 

different travel and charging behaviour to the rest of the population. 
 Existing EV charging infrastructure: used to map existing charging demand to network 

assets and understand where future infrastructure may be installed. 
 Points of interest (POI): these can be potential locations of EV charging such as 

hotels, supermarkets, petrol stations and service stations. Used to predict where 
future EV charging infrastructure will be installed. 

 Travel patterns: share of personal car work and shopping trip ends. Used to determine 
the scale and location of work and public EV charging demand.  

Apart from the above datasets, uptake projections for EV volumes (cars and vans) are also 
required as data inputs. The analysis in REFLECT project has considered the EV uptakes 
adopted in Electricity North West DFES 2020 that follows the Department for Transport (DfT) 
projections of vehicle stock, as well as an uptake with lower vehicles on the road. 

The project’s dataset report (file ID: ENWL022 - Lot1 Dataset Report.pdf) can be accessed 
from REFLECT website (online: www.enwl.co.uk/reflect).  

1.3 Methodology and Tool Specifications 

The developed REFLECT methodology uses the regional datasets described in section 8.2 
to model EV charging down to per primary substation feeding area. To do that, 24 
archetypes have been defined, which are differentiated by being either: 

 cars or vans; 
 battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV); 
 commuters or non-commuters; 
 parking off-street or on-street at home; 
 rural or urban home location. 

Charging behaviour is differentiated across 12 charging archetypes, which follow the 
definitions of the user archetypes. However, rural and urban located vehicles are assumed 
to have the same charging behaviour. Charging demand is split across 5 charging location 
types: home; on-street residential; work; rapid en-route; and destination. For home charging 
a correlation between battery size of the vehicle and energy per charge is used to determine 
the energy per charge. For the other charging location types, the number of charging events 
per EV per day at each charging location type are based on analysis of data from WPD’s 
Electric Nation project. 

The distribution of vehicles across user archetypes has been determined by collecting data 
on current BEV and PHEV car and van ownership across our licence area. These have been 
further differentiated based on statistics and estimates of commuter numbers, off-street 
parking access, and rural or urban home location. 



The uncertainty in EV charging demand is analysed by running several ‘micro-scenarios’ for 
each run of the tool. In each micro-scenario, the share of charging demand fulfilled at each 
charging location type varies, with these shares being randomly sampled from pre-defined 
probability distributions. Probability distributions for the share of residential, work, and en-
route charging demand for each charging archetype have been defined, meaning that 36 
probability distributions have been produced in total. 

The REFLECT methodology uses simple and reasonable at the same probability 
distributions for each charging location type. For example, the local percentage of access to 
off street parking has been used to define the mean value of a normal distribution (statistical 
distribution type) with standard deviation ±20% of the mean value for the off-street home 
charging. This modelling approach acknowledges the expected high correlation of availability 
of off-street parking with customers choosing to charge their EVs at home. On the contrary, 
for charging at work a uniform statistical distribution has been considered, recognising the 
higher uncertainties around employers providing EV charging at work. Future work can use 
insights from consumer choice to produce well informed and potentially more complex 
probability distributions. 

The REFLECT tool is coded in Python 3.7 using packages compatible with the Anaconda 
distribution. The user can provide inputs to the tool through an Excel control interface, which 
produces CSV input files to be read by the tool. Outputs are produced as CSV files in the 
same format as existing Electricity North West forecasting tools, to allow easy integration 
with business as usual processes.  

An Excel-based probability distribution generator has been produced to assist with the 
generation of the charging demand profile for each micro-scenario. Each micro-scenario has 
an associated probability, and the results from each micro-scenario are combined to 
generate mean/upper/lower quartile or user defined demand profiles for each primary 
substation. 

More information on the REFLECT methodology and tools can be found in the project’s tool 
specification report (file ID: ENWL022 – Tool Specification Report.pdf) can be accessed from 
REFLECT website (online: www.enwl.co.uk/reflect). 

1.4 Analysis for Electricity North West’s License Area  

This section presents high level results using the REFLECT tool with EV volume uptakes 
from the Central Outlook and Consumer Transformation scenarios of ENWL DFES 2020. 
The two scenarios consider the same EV uptake trends. Analysis has been carried out 
across all BSP and primary substations in our license area. 

To demonstrate how local characteristics can frame uncertainties in EV charging at local 
level, we present the comparison between the overall EV charging demand across all BSPs 
and the EV charging demand of a primary substation that exhibits different local 
characteristics from the average across our license area. Fig. 1 shows the EV charging 
profiles for the aggregated demand across all BSPs in our license area. Analysis has been 
carried out for 50 micro-scenarios, which can be considered as 50 variations in terms of half-
hourly profiles around the half-hourly EV charging profiles of the Central Outlook scenario. 
Each micro-scenario has an assigned probability (see section 8.3) to indicate how likely it is 
for each variation to occur.  

The three profiles presented in Fig. 1 are: 



 highest: corresponds to the highest per half-hour EV charging demand across all 
micro-scenarios. The probability is different per half-hour and equal to the 
corresponding probability of the associated micro-scenario. 

 lowest: corresponds to the lowest per half-hour EV charging demand across all micro-
scenarios. The probability is different per half-hour and equal to the corresponding 
probability of the associated micro-scenario. 

 mean: corresponds to the weighted average considering all micro-scenario profiles 
and the associated probability per micro-scenario.  

 

Fig. 1. Aggregated EV charging demand profile across all BSPs for a typical winter day in 
FY28. Results shown for the lowest, mean and highest EV charging demand profiles taking 

into account all 50 micro-scenarios. 

What is evident in these three profiles is that a) the highest EV charging demand occurs in 
afternoon and evening hours and b) there is a relatively narrow range between the highest 
and lowest demand micro-scenarios. These can be explained by the associated EV user 
archetype data shown for the whole Electricity North West license area in Fig. 2. More 
specifically, the high percentage of access to off-street parking (86% of users) and the high 
percentage of commuters (53% of users) result in more charging away from working hours 
and a significant amount of overnight smart EV charging at home. 

 

Fig. 2 EV user archetypes distribution for the whole ENWL license area. 



From a modelling perspective, the narrow range between high and low demand in Fig. 1 and 
the peak demand for all three profiles being away from day time working hours is explained 
from the use of probability distributions for residential charging that consider higher 
certainties for users with access to off-street parking to charge their EVs at home. Fig. 3 
shows how the raw probability distributions modelled for residential, work and en-route 
charging differ. In specific, it is evident that the normal distribution considered for residential 
charging has a high mean value (ie, statistical mean of a normal distribution) and low 
standard deviation. This is not the case for the other two types of charging recognising that 
there are higher uncertainties around when and where users will charge their EVs at work 
and/or en-route. For more information see section 8.3 and the Tool Specification report 
(online: www.enwl.co.uk/reflect). 

 

Fig. 3. Examples of raw user-defined probability distributions and generated normalised and 
cumulative probability distributions. 

Unlike the profile characteristics for the EV charging across the whole of Electricity North 
West license area shown in Fig. 1, there are local EHV substations that exhibit very different 
EV charging profiles under uncertainty. Fig. 4 shows the corresponding profiles for the 
Manchester University primary substation. Unlike the EV charging profiles for the whole of 
Electricity North West license area, this primary substation exhibits a) peak demand in 
morning hours during working time and b) a wider range of peak demand between the micro-
scenarios. 



 

Fig. 4. EV charging demand profiles for Manchester University primary substation for a typical 
winter day in FY28. Results shown for the lowest, mean and highest EV charging demand 

profiles taking into account all 50 micro-scenarios. 

This behaviour can be explained from the local EV user characteristics in the associated 
primary substation feeding area. As shown in Fig. 5, Manchester University primary 
substation supplies an urban area with very limited access to off-street parking and relatively 
lower commuters compared to the Electricity North West area average. In addition to this, 
this area has higher trip origins and ends for work and shopping travels than the Electricity 
North West license area average (see section 8.3 on regional datasets). These mean that 
more EVs are expected to consider EV charging at work and destination, where higher 
uncertainties have been modelled using “flatter” probability distributions that model the 
uncertainties for employers and commercial entities to provide EV charging at work, shops 
etc.  

 

Fig. 5. Data for the EV user archetypes for the Manchester University primary substation 
feeding area. 

To sum up, the developed Python tool has been used to analyse the whole of our EHV 
network. Results are presented in this report for 50 micro-scenarios around our Central 
Outlook EV uptake scenario from Electricity North West DFES 2020. To assess the highest 
and lowest EV charging profiles using all micro-scenarios and define an envelope for the 
range of EV charging profiles, we have modified the original prototype tool produced by 



Element Energy that considered upper/lower quartile and not the actual envelope (see Tool 
Specification report).  

Our analysis has revealed that local characteristics data can define both the time of peak EV 
charging and the range of min-to-max demand per half-hour. Importantly the tool can be 
used to do this on each and every BSP and primary substation to support distribution 
network planning, as well as for wider areas or for the whole of our license area to inform 
transmission network planning from a whole system perspective. 

1.5 Automatic and Manual Selection of Micro‐scenarios 

The analysis presented in section 8.4 using 50 micro-scenarios has a significant 
computational cost of 15-20 hours on a personal computer. This is due to the fact that the 
developed REFLECT tool in Python combines a) a probabilistic analysis to model the share 
of EV charging per charging location with b) a half-hourly analysis that models all 24 
archetypes (see section 8.3). The process followed in section 8.4 is shown in in Fig. 6 within 
the dashed lined box of the REFLECT Python tool. Specifically the probabilistic modelling 
module of the model was used to produce the 50 probabilistic outputs, ie combinations of the 
shares of EV charging demand between different types of location of charging (work, en-
route etc). Each of the probabilistic outputs with a corresponding probability to occur was 
then considered as a micro-scenario and modelled together with all other local data and 
charging data (ie, 24 modelling archetypes) to produce the half-hourly EV charging profiles 
of that micro-scenario for each EHV substation. 

 

Fig. 6. Modular structure of the REFLECT Python tool that allows both automatic and manual 
definition of the micro-scenarios. 

The analysis to produce EV profiles for every EHV substation in Electricity North West 
license area described in section 8.4 has involved an automatic process to select micro-
scenarios as shown at the upper part of Fig. 6. Even though an automatic process can 
provide up to 50-100 variations/micro-scenarios around a core DFES planning scenario, 
each micro-scenario corresponds to a probabilistic output and therefore there is a relatively 
low probability that a more extreme micro-scenario could not be identified. At the same time, 
even though the analysis in section 8.4 is sufficient to produce the envelope of min-to-max 
EV charging per EHV substation, the number of micro-scenarios could be required to be 
relatively low (eg, no more than 10) when used in decision making tools such as our ROCBA 
tool that has been developed under our Demand Scenarios NIA project.  
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To cater for the above, a manual processing of the probabilistic outputs is required as shown 
in Fig. 6 to: 

 allow the selection of a single micro-scenario out of a very large sample of probabilistic 
outputs (ie, in the order of thousands); and, 

 allow the production of a small number of micro-scenarios using the clustering of a 
large sample of probabilistic outputs, eg using a robust K-means approach on the 
shares of charging between the different location types per substation feeding area. 

To facilitate this manual selection of micro-scenarios we have requested Element Energy to 
have an intermediate output Excel file that contains all probabilistic outputs. The model can 
in this case run to produce the probabilistic modelling module outputs and then stops. A 
manual processing of the outputs can then take place and the tool user can then define in 
the same Excel file format the micro-scenario settings to run the time-series EV profile 
module that produces the EV charging profile per micro-scenario and per substation.  

1.6 Building on the REFLECT Methodology to Enhance Decision Making in 
Network Planning 

There are two key areas that the developed REFLECT methodology can enhance decision 
making in network planning: 

i. enhance CBA analysis tools that consider multiple scenarios, such as the Real 
Options CBA (ROCBA) tool developed by the Demand Scenarios NIA project; and, 

ii. introduce a new modelling framework for DFES/FES with the introduction of micro-
scenarios and the use of probabilities in scenarios and network planning risk and 
cost assessments. 

Use of REFLECT micro-scenarios in ROCBA 

Our ROCBA tool was developed in our Demand Scenarios NIA project and can use multiple 
scenarios to inform network planning decisions between traditional network reinforcement 
and flexible service options. Even though DNOs currently do not assign probabilities on each 
DFES scenario used in network planning, ROCBA allows the use of scenarios with assigned 
probabilities in risk and cost assessments.  

However, the ROCBA tool requires scenario inputs to model demand growth rather than any 
other probabilistic form of input, eg a large sample of Monte Carlo combinations or a 
decision tree with a large number of combinations. Our REFLECT approach overcomes this 
limitation with the introduction of micro-scenarios, which are similar to the scenarios which 
can be used to produce a half-hourly EV charging profile. This profile can be superposed on 
the forecasted demand profile for the examined scenario to define the per year peak true 
demand required as an input in the ROCBA tool. 

As described in the previous section, the REFLECT tool can produce a large sample of 
probabilistic outputs that will allow a manual selection of the micro-scenarios. The proposed 
approach to produce the micro-scenarios used in ROCBA tool is to consider the clustering of 
a limited number of micro-scenarios, ie no more than 5-10 per scenario, from a sample of 
over a thousand probabilistic outputs. More specifically, using a K-means clustering the 
probabilities assigned to each probabilistic output will be aggregated to assess the overall 
probability of every micro-scenario. 

Following this approach the ROCBA tool can use micro-scenarios where EV charging model 
allows us to: 



 consider a large sample of probabilistic outputs / combinations of EV charging per 
location type without significant computational cost; 

 use this large sample to produce a small number of micro-scenarios that can be used 
as demand growth inputs in ROCBA with associated probabilities calculated directly 
from the sample. 

 produce micro-scenarios around each DFES scenario to effectively enhance a 
decision-making approach that uses a complete DFES set of scenarios with 
additional uncertainty modelling for EV charging per substation feeding area. 

Enhanced network planning using DFES with probabilistic analysis 

Forecasting scenarios are traditionally produced and published in the whole system FES 
world (ie, set of FES and DFES covering the whole of GB) to inform transmission and 
distribution system and network planning. These established forecasting approaches 
consider a large number of components / building blocks that would make it very challenging 
to be modelled using a probabilistic modelling approach.  

Even though EV charging uncertainties are critical in network planning decisions within the 
running decade, as more EVs are registered we can improve our understanding on local EV 
charging using the available monitoring data (eg, from smart meter data and LV 
measurements). However, the developed modelling framework in REFLECT can be used in 
the future to use probabilistic assessments to model uncertainties around other demand or 
generation components that cannot be framed using the DFES scenarios. 

As shown in Fig. 7 in terms of a high level demonstration with dummy trends, a probabilistic 
forecast would consider all possible combinations of the settings of building blocks, resulting 
in a large number of forecasting trends for demand (and/or generation) covering the whole 
spectrum of future outcomes. Such an approach would have a very high computational cost. 
Using a scenario forecast would account for a limited number of combinations of building 
block assumptions. A proper selection of building block assumptions as we follow in our 
ATLAS forecasting methodology would allow the production of a higher probability central 
scenario (best view) with average/central risk in planning and lower probability scenarios that 
could cover the min-to-max future range of demand. 

 

Fig. 7. High level overview of long-term demand and generation forecasts produced by 
scenario based and probabilistic modelling approaches. 



However, scenarios cannot always capture future uncertainties around demand growth. Our 
REFLECT project has focused on the local uncertainties around EV charging that cannot be 
captured with existing scenarios, given that DFES across all GB DNOs currently focus on EV 
uptake trends rather than how uncertain it will be for the different types of charging to occur 
from one local area to another. The concept of micro-scenarios with assigned probabilities 
that has been introduced in REFLECT project can be in future adopted in other types of key 
uncertainties that cannot be currently framed using scenarios.  

Fig. 8 shows an example of the use of the REFLECT type micro-scenarios in decision 
making for network planning. A set of micro-scenarios are considered here in terms of peak 
demand. For example, each micro-scenario trend could be produced by first summating the 
Central Outlook scenario demand profiles (without EV charging) and the EV charging 
profiles from each micro-scenario presented in section 8.3. Next the peak demand from 
every year could be extracted and presented as a micro-scenario peak demand trend 
around the core scenario (Central Outlook in this case). 

 

 

Fig. 8. Extending the micro-scenario concept of REFLECT project beyond EV charging to 
model key forecasting uncertainties not captured by existing scenario frameworks. 

As shown in Fig. 8, this approach can be extended to more than one scenario. In such a 
holistic approach with a full set of scenarios and a number of micro-scenarios around every 
scenario, a set of micro-scenarios can be used to define a peak demand trend with an 
associated overall probability. For example, the four circled micro-scenarios in Fig. 8 can be 
used to define: 

 a per year peak demand as the maximum per year peak demand value of these micro-
scenarios; and, 

 an overall probability that demand cannot extend this per year peak demand value. 
This probability can be assessed as the aggregated probabilities of all associated 
micro-scenarios. 

It should be highlighted that it is the role of the decision-making methodology (eg, ROCBA) 
to inform an optimal planning approach in terms of minimising both the risks and costs of 
planned interventions. However, the concept of micro-scenarios can enhance the current 
role of scenarios in decision making. This can be easily understood from the example of Fig. 
8 if our aim was to minimise network risks in planning. With the use of the two scenarios 
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without any micro-scenario, the minimum risk approach where network capacity will not be 
exceeded in the future would require the use of scenario 1 peak demand trend. However, 
the micro-scenario analysis demonstrates that at least two micro-scenarios with associated 
probabilities of 7 and 8% exhibit higher demand growth than scenario 1. Therefore, there is 
an overall 15% risk in this example that future demand exceeds network capacity if the 
micro-scenarios are neglected and network planning is informed purely by the two scenarios. 

To sum up, our REFLECT project has introduced a wider framework of enhancing the use of 
scenarios in decision making with the introduction of micro-scenarios with probabilistic 
modelling on top of the scenarios. In the REFLECT project we have applied the developed 
methodology to produce micro-scenarios and frame uncertainties around EV charging for the 
whole of our EHV network. However, the developed methodology with the use of micro-
scenarios can be applied to other key factors that can have a significant impact on demand 
growth, but current scenario frameworks cannot properly capture the associated 
uncertainties. 

 


