Breakout Session 1.5 Innovation in Electricity Network Design

LCNI Conference Wednesday 6 December 2017

Celectricity

Bringing energy to your door

Stay connected...

y f 🛅 🗇 in

www.enwl.co.vk

曲書公萬

Pelectricity

Bringing energy to your door

一十二十二

The ATLAS project (Architecture of Tools for Load Scenarios)

Dr Rita Shaw Model Development Lead

Stay connected... Stay connected... F B Connected... www.enwl.co.uk

Load may rise...

... and it may fall

Objectives of our work

Credible demand and generation scenarios, reflecting uncertainty

Tailored to our region, assets and data

Support well-justified strategic planning of network capacity

Enabling good decisions about solutions to capacity problems, and informed dialogue with National Grid and other stakeholders

This presentation

Demand Scenarios with Electric Heat and Commercial Capacity Options

ATLAS (Architecture of Tools for Load Scenarios)

Winter / summer peak load Heat pumps & air con The Real Options CBA model Half-hourly (hh) through year Demand & generation Seasonal peak and min P (MW) & Q (MVAr)

April 2015 - October 2016

Nov 2015 – December 2017

ATLAS scope

Full half-hourly view of true MW demand

MW scenarios learning from the Demand Scenarios NIA, with more customer detail

MVAr scenarios learning from REACT NIA, for whole DNO network Prototype tools for GSP, BSP and Primary scenarios

ATLAS – demand definitions

ATLAS – true demand

Identification of data problems

Data corrections (half-hourly & daily analyses)

See detailed methodology at www.enwl.co.uk/atlas

Aggregated MW demand across GSPs

Latent demand varies over time

Substation-specific weather correction

Scale half-hourly demand to the historic temperature range of that month

elementenergy

MW forecast model per G&P substation

elementenergy

Underlying demand based on 35 customer archetypes matched to substations <i>Efficiency, demographics, economic activity</i>		
		Energy Storage
Demand Technologies	Generation Technologies	Technologies
Electric vehicles	Solar PV	Domestic storage (with solar PV)
Heat pumps (domestic and I&C)	Wind	I&C storage behind the meter
Air conditioning (domestic and I&C)	Micro and larger CHP	Frequency response
	Flexible generation	
	Other generation	

elementenergy

What does ATLAS add?

All prototype development in 2017 – transfer to BAU in 2018

2017 peak true demand scenarios

Using the ATLAS prototype approach

Use scenarios to make decisions

Why forecast reactive power?

Simplified view of MVAr (Q) flows

ATLAS Q Forecasting method

Q forecasting – empirical rule

Q absorption → reduced for more lightly loaded EHV, but not for reverse flows

Q gains → increased when more cables or higher voltage targets are used

Q at primaries → more capacitive primaries (declining Q/P trends)

Network Modelling Time-series analyses (i.e. daily simulation using operational aspects) REACT approach... but with enhanced inputs

P and Q profiles at primaries (and BSPs for large customers)

Central Outlook scenario, avg DG output , minimum Q demand = max Q exports

Q exports in this scenario: +5% in 5 years +11% in 10 years +83% in 35 years

But... in reality max Q exports could be even higher in different scenario and with different generation output

Future application of the ATLAS methods

By 2020:

NG as SO will use powers under RfG / DCC to set Q export limits at GSPs, via expanded NOA process

Could add significant costs on DNOs in ED2 period So next year we will:

Use 2018 scenarios to estimate max Q exports at GSPs

Request NG's expected Q export limits at GSPs / compare to Q export scenarios

Scope interventions to alter max Q in ED2

And in FY20 we will:

Use 2019 scenarios to estimate max Q exports at GSPs

Compare max Q exports in our scenarios to limits per GSP

Create high-level intervention programme for ED2 WJBP

Final months of the project

Available capacity for generation Thermal and fault level Scope approach for secondary networks, build on improved baseline data in new NMS

Transition G&P approach to BAU, but keep under review

	www.enwl.co.uk/innovation
e	innovation@enwl.co.uk
	0800 195 4141
y	@ElecNW_News
'n	linkedin.com/company/electricity-north-west
f	facebook.com/ElectricityNorthWest
Ö	youtube.com/ElectricityNorthWest
Please contact us if you have any questions or would like to arrange	

a one-to-one briefing about our innovation projects