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� A real options framework for distribution network investments under uncertainty.

� Smart (flexible) and asset-based investment values are compared transparently in Microsoft Excel.
� Both economic and physical (interruption) risks are measured in a multi-criterion analysis.
� Case study shows the value of demand response for deferring asset-based investments.
� Probabilistic regulatory frameworks are thus needed to give flexible investments their fair value.
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a b s t r a c t

Classical deterministic models applied to investment valuation in distribution networks may not be
adequate for a range of real-world decision-making scenarios as they effectively ignore the uncertainty
found in the most important variables driving network planning (e.g., load growth). As greater un-
certainty is expected from growing distributed energy resources in distribution networks, there is an
increasing risk of investing in too much or too little network capacity and hence causing the stranding
and inefficient use of network assets; these costs are then passed on to the end-user. An alternative
emerging solution in the context of smart grid development is to release untapped network capacity
through Demand-Side Response (DSR). However, to date there is no approach able to quantify the value
of ‘smart’ DSR solutions against ‘conventional’ asset-heavy investments. On these premises, this paper
presents a general real options framework and a novel probabilistic tool for the economic assessment of
DSR for smart distribution network planning under uncertainty, which allows the modeling and com-
parison of multiple investment strategies, including DSR and capacity reinforcements, based on different
cost and risk metrics.

In particular the model provides an explicit quantification of the economic value of DSR against al-
ternative investment strategies. Through sensitivity analysis it is able to indicate the maximum price
payable for DSR service such that DSR remains economically optimal against these alternatives. The
proposed model thus provides Regulators with clear insights for overseeing DSR contractual arrange-
ments. Further it highlights that differences exist in the economic perspective of the regulated DNO
business and of customers. Our proposed model is therefore capable of highlighting instances where a
particular investment strategy is favorable to the DNO but not to its customers, or vice-versa, and thus
aspects of the regulatory framework which may need altering.

The case study results indicate that DSR can be an economical option to delay or even avoid large
irreversible capacity investments, thus reducing overall costs for networks and end customers. However,
in order for the value and benefits of DSR to be acknowledged, a change in the regulatory framework
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(currently based on deterministic analysis) that takes explicit account of uncertainty in planning, as
suggested by our work, is required.

& Published by Elsevier Ltd.
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1. Introduction

Demand-side resource planning is a key priority for distribu-
tion network operators (DNOs) as Section 9 of HMSO, 1989 (the
Electricity Act 1989, as amended in HMSO, 2000) places an ob-
ligation on DNOs to develop and maintain an efficient, coordinated
and economical system of electricity distribution and to facilitate
competition in the supply and generation of electricity. Subject to
a combination of tight controls and incentives from the UK Reg-
ulator, Ofgem, DNOs must comply with very high standards re-
garding the security of electricity supply, customer service and
customer safety, while guaranteeing the least possible cost to the
consumer. These objectives have traditionally been achieved
through network planning that seeks minimum cost network in-
vestment schemes satisfying the power transfer requirements
from generation to loads while considering N-1 security and en-
suring compliance with the Engineering Recommendation P2/6.
These generally include high-voltage network or primary substa-
tion reinforcements such as the expansion and replacement of
new overhead lines, underground cables, switchgear and power
transformers in heavily loaded substations, while maintaining and
repairing current network components. However, not only are
these solutions extremely costly, but given today's highly un-
certain outlook for peak demand trends, they simply may not be
required or prove cost-effective in the longer term. An alternative,
or complement, to traditional solutions is the application of smart
innovative schemes, including DSR, Active Network Management
(ANM), storage and the connection of Distributed Generation (DG)
(Onen et al., 2014; Poudineh and Jamasb, 2014; Shaw et al., 2010)
directly to the network. However, a rigorous framework for
quantifying the benefits of these alternatives that takes into ac-
count uncertainty in future peak demand growth as well as
managerial response to new information as it arrives over time is
still lacking.

1.1. Contribution

The main contribution of this work is the design of a novel real
options (RO) framework and the development of a relevant tool
that can provide DNOs with a means of making long-term in-
vestment decisions in demand-side resource planning in smart
distribution networks under a coherent and easily interpretable
probabilistic framework. The RO approach to valuing flexible in-
vestments under uncertainty is combined with the simplicity and
practicality of an Excel-based spreadsheet tool so that the frame-
work can readily be implemented into the existing planning or
policy-development processes of DNOs or Regulators. The benefits
of this framework include:

) Determining the optimal long-term investment strategy under
currently available information.

) Ranking the considered strategies by the expected cost metric –

this in particular answers the open and important question as to
the value of non-asset based solutions such as DSR relative to
“classical” asset based solutions such as network reinforcement.

) The use of expertly chosen scenarios, with probabilistic analyses
within each scenario, in addition to overall analysis.
) An approach to determining the breakeven pricing level in a
DSR investment strategy so as to quantify the maximum pay-
ment price for contracting DSR customers, thus allowing ap-
propriate regulation of DSR contractual arrangements.

) Quantification of the economic and physical risks associated
with specific strategies, to address relevant techno-economic
requirements set out by the Regulator.

The policy implications of our proposed RO framework include
highlighting the economic value of DSR as a potentially cost ef-
fective alternative to traditional capacity investment, with benefits
eventually passed on to the end customers, and more direct in-
volvement in system operation of more network users, namely
DSR providers. However, for these benefits to become material and
DSR to be effectively deployed, a regulatory change is needed that
allows explicit consideration of uncertainty in planning, as op-
posed to the deterministic analysis that is currently required. The
DSR payment price calculated by our model can also help the
Regulator oversee contractual arrangements defined by the DNO.
Finally, our quantitative model is able to highlight differences that
may exist between the economic perspective of the regulated DNO
business and of customers in general. When a strategy is favorable
to the DNO but not to its customers in general, regulatory over-
sight of investment projects is needed to ensure that such a
strategy is not followed. Conversely when a strategy is favorable to
customers but would financially penalize the DNO business, this
highlights situations in which the regulatory framework may need
to be altered. Finally, when both DNO and customer perspectives
lead to the same choice of strategy, this suggests that what is good
for the DNO business is also good for its customers.

1.2. Paper structure

This paper is organized as follows. Section 2 presents the gaps
in the current regulatory framework that require attention in or-
der to systematically assess and compare different investment
strategies under a coherent framework that takes into account the
relevant uncertainties. Section 3 describes our multi-layered
methodology for modeling uncertainty, separating long-term and
shorter-term uncertainties in a way that is consistent with real-
world planning and decision-making. Different metrics for se-
lecting optimal strategies are also defined. Section 4 describes a
case study and data for two different investment strategies, which
are then compared in Section 5 using our Excel-based RO tool
using different cost and risk metrics. Finally, conclusions and po-
tential policy implications from these results are discussed in
Section 6.
2. Regulatory framework

2.1. Current framework

Ofgem's (2013) RIIO network regulation model (Revenue-
¼ Incentivesþ InnovationþOutputs) aims at regulating DNOs, im-
proving network reliability, providing environmental benefits and
reducing costs while delivering the required ‘network outputs’
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through a set of schemes that promote innovation (Ofgem, 2015).
Within this context, a Cost Benefit Analysis (CBA) framework was
developed as part of the Price Review to allow DNOs to assess the
attractiveness of their proposed investment solutions and negoti-
ate with Ofgem appropriate cost allowances allowing them to
recoup their costs, while protecting the interests of electricity end-
users. It allows the comparison of solutions based on consistent
and comparable cost metrics associated with the different in-
vestment plans (Martínez Ceseña et al., 2016). Nonetheless, the
CBA approach proposed for RIIO-ED1 (Ofgem, 2013) relies on a
deterministic framework, namely the discounted cash flow (DCF)
method of Net Present Value (NPV). It uses a single scenario for
demand evolution, implicitly assuming that future demand
growth is deterministic and certain for the entire lifetime of the
project, which neglects the fact that DNOs have to make invest-
ment decisions based on uncertain best view forecasts. The CBA
approach thus consistently eliminates any other possible scenario
from the analysis and fails to properly reflect both real-world
uncertainty and the flexibility of management to respond to such
uncertainties once actual outcomes are known (Avner and Strange,
1996). Indeed, given that distribution network investments are
planned over long time-scales (several decades) and that there are
multiple and significant sources of uncertainty, particularly in
demand evolution, energy prices and weather conditions that af-
fect the required level of network capacity, an appropriate eva-
luation framework should consider uncertainty in its analysis.
Furthermore, the dissemination of low carbon distributed tech-
nologies both on the demand side (e.g., electric heat pumps and
electric vehicles) and on the supply side (e.g., wind, solar and
cogeneration) will cause projections of net electricity demand, and
therefore of the level of required capacity, to be even more un-
certain (Department of Energy and Climate Change (DECC), 2014;
Schachter and Mancarella, 2015). In this context the flexibility
offered by distributed energy solutions such as DSR or DG could
help defer or even avoid costly irreversible network upgrades
(Martínez Ceseña and Mancarella, 2016; Strbac, 2008; Yang et al.,
2008), thus potentially reducing capital costs.

2.2. Framework for flexible investment valuation methods

The need to incorporate uncertainty in network investment
planning was in fact already recognized by Ofgem in their con-
sultation document in (Ofgem, 2012) (although there has not been
any follow up to this in the regulation of electricity distribution).
Similar preliminary studies were carried out by the New Zealand
Regulator in (Boyle et al., 2006). Both reports suggest a more
flexible tool based on the theory of financial option pricing for
assessing the desirability of potential investments in gas and
electrical transmission network capacity, respectively. None-
theless, in their modeling of uncertainty in future gas demand for
gas networks (Ofgem, 2012), Ofgem makes strong assumptions,
assuming peak demand to follow a geometric brownian motion
(GBM). Indeed in economic applications, standard and geometric
Brownian motion (or Wiener processes), as well as mean-reverting
processes, have extensively been used in the literature, for ex-
ample to model electricity and gas prices (Buzarquis et al., 2011;
Cheng et al., 2011; Davis and Owens, 2003; Fuss et al., 2008;
Marreco and Carpio, 2006). Yet, for RO applications, there is no
guarantee that the model of a physical variable such as peak de-
mand in a network should follow any of these standard stochastic
processes such as GBM (Schachter and Mancarella, 2016).

These approaches however stress the need for providing a
means of a) modeling uncertainty and b) modeling the managerial
response to new information as it arrives over time. In this respect,
applying option pricing models to value real assets, in other words
taking a RO approach, as described in (Schachter and Mancarella,
2016), enables decision makers to model active decision making as
uncertainty gives way to information. It accounts for the fact that,
in reality, decision makers will seek to take advantage of future
better conditions when they occur and, conversely, will seek to
minimize the impact of future poorer conditions should they arise.
RO therefore does not create additional flexibility, but highlights in
a quantitative way the value of the flexibility that is available in
decision making, which is particularly important in a network
investment context. Since flexibility adds value, investments giv-
ing management the ability to respond appropriately in a variety
of future scenarios have the potential for higher RO value. RO
thinking hence does not favor projects that are more flexible but
simply highlights the benefits from flexibility that other techni-
ques such as those based solely on deterministic DCF analysis
cannot. The result is that RO analysis allows a reasonable com-
parison between flexible and inflexible network investment stra-
tegies by giving both their fair value. Nonetheless, current RO
methods are typically either too simplistic to be of use in invest-
ment planning for distribution networks, or alternatively overly
computationally complex for practical implementation.

2.3. Electricity North West Ltd. Capacity to Customers solution

Distribution networks in Great Britain are designed according
to Engineering Recommendation P2/6 with a suitable amount of
spare emergency capacity, which is seldom used as emergency
conditions may arise only once every three years or less frequently
(Electricity Northwest Limited, 2013). Electricity North West Lim-
ited, one of the DNOs in the UK, has proposed a new DSR solution
that involves contracting larger non-domestic customers to pro-
vide post-fault demand response in order to release spare capacity
during normal operations that would otherwise be used only
under emergency conditions. The project, named Capacity to
Customers (C2C) (Electricity North West Ltd., 2014), attempts to
reduce network investment costs by automating the network, re-
configuring it and using DSR to release untapped capacity during
emergency conditions. Essentially, the network, when healthy, is
normally operated beyond the capacity suggested by the security
standards; then, if a fault occurs and the network is thereby sub-
ject to overloading, a suitable amount of contracted DSR is acti-
vated and load is disconnected (see (Syrri et al., 2015) for more
details). As a result, thermal and voltage problems can be more
efficiently managed with DSR deployment allowing demand to
grow beyond security limits (e.g. based on P2/6 engineering limits
(Martínez Ceseña and Mancarella, 2014)). The C2C method, cur-
rently under trial in the UK, could hence be an attractive alter-
native (or complement) to costly medium-voltage (MV) network
or primary substation reinforcements, while also potentially
achieving important benefits for customers (Martínez Ceseña
et al., 2015). DNOs must adapt to cope with these changes as un-
derinvestment could potentially lead to greater customer inter-
ruptions and incentive penalties on the DNO, while over-
investment could cause the underutilization and stranding of
certain assets, which would also lead to large financial penalties
for the DNO if Ofgem declares these investments inefficient (Shaw
et al., 2010). Assessing and mitigating this risk is therefore im-
portant and having flexible investment plans that can easily be
altered in the event that the future develops differently from ex-
pected can prove extremely valuable. The profitability of these
more flexible alternatives, including a more efficient utilization of
current network assets and investments in smart technologies,
must therefore be assessed on a fair basis alongside traditional
network upgrades.
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3. Proposed methodology

3.1. Uncertainty modeling – a multi-layered approach

In this work, particular emphasis is placed on the fact that
uncertainties are of different kinds. Long-term peak demand un-
certainty is modeled using a small number of scenarios, to which
is then added a complementary approach, a random process of
smaller magnitude to capture short-term variations around the
long-term trend, thus taking account that such scenarios are
merely representative. In total, this provides a transparent ap-
proach to the simulation of future peak demand as it evolves over
time, allowing real-time management responses to also be simu-
lated in a transparent and consistent way. In addition to providing
quantitative results, our use of simulation and modeling of man-
agement responses therefore provides a ‘playable model’ from
which decision makers can gain a better understanding of the
potential benefits of, for example, DSR as an alternative to re-
inforcement, which can be used to inform policy makers and
regulators on the best investment strategies and appropriate
specification of DSR contracts.

3.1.1. Layer 1: strategies
The layered approach proposed aims at combining the best

available RO techniques in the most appropriate way. Layer 1 re-
presents different investment strategies corresponding to a pre-
defined set of interventions that take place at “tipping points” over
the lifetime of the analysis, as each simulation progresses. The
tipping points may be deterministic, such as the planned in-
stallation of an asset in say 2019; alternatively they may depend
on the simulation itself, such as the use of DSR if and when peak
demand reaches a certain trigger level. Each set of independent
simulations will therefore typically have different tipping points
reached at different times, and this feature is both realistic and
helps illustrate the spread of risk and outcomes. In the developed
tool, each investment strategy is composed of a set of up to three
interventions (though the model is not limited by the number of
interventions and could be expanded as needed) that can include
the implementation of traditional network reinforcements (small
or large) and DSR interventions.

As examples, a single-intervention strategy could be to make a
conventional reinforcement when peak demand rises to an ap-
propriate tipping point. A two-intervention strategy could be to
begin using a certain level of DSR when a first tipping point is
reached, and then to make a conventional reinforcement if and
when peak demand achieves a second, higher tipping point. While
these strategies are very sound, there is potential to include other
strategies to be purposely devised through expert consideration,
such as increasing DSR in stages over a series of progressively
higher tipping points. In fact, by increasing the considered flex-
ibility, these further strategies could provide insight into the op-
timal staging of investment decisions. In any case, the interven-
tions and their associated costs and implementation lead times
should be accurately represented in the strategies considered and
so expert engineering input into the techno-economic assessment
is highly valuable. We hence assume that when the number of
potential strategies is large, expert judgment is first used to de-
termine which strategies are likely to be competitive and this
smaller screened set is then entered into the RO model.1
1 In extreme cases when the number of strategies to be analyzed is very large,
an optimization model may be applied in addition to the RO model, either em-
bedded within the RO analysis engine or whose results need to be provided exo-
genously to the RO engine; for an example of such an optimization see (Martinez
Cesena and Mancarella, 2016).
3.1.2. Layer 2: scenarios
Standard industry practice is to model long-term peak de-

mand uncertainty using a small number of scenarios (Layer 2)
chosen by a combination of modeling, stakeholder input and
expert judgment (e.g., National Grid's Future Energy Scenarios
(National Grid, 2014)); we model the underlying trend in future
peak demand in this way. A manageable number of scenarios are
first constructed for the most important uncertain variable
driving network investment, namely peak demand growth. In this
way, the decision maker clearly and directly specifies long-term
uncertainty, possibly taking advantage of existing ‘in-house’
scenario analyses. Each of these scenarios is then given a prob-
ability weight, representing the expert's view on the likelihood of
that scenario materializing (relative to the other representative
scenarios). The most straightforward approach to selecting these
probability weights is to choose scenarios that are perceived to
be equally likely as futures. However, this approach may not
allow a sufficiently diverse set of scenarios to be explored, such as
best and worst cases. A central scenario may then be up-weigh-
ted and extreme scenarios may be down-weighted, while all
other scenarios remain equally probable (this is the approach
taken by Electricity North West). However, this is not strictly
necessary and any combination of probability weights may be
used, provided that they sum to 100%.

3.1.3. Layer 3: Monte Carlo simulations
While uncertainty over peak demand growth is represented

principally by the choice of scenarios in layer 2, a level of “noise”
(Layer 3) may be generated around the otherwise smooth trajec-
tories in each scenario. This takes appropriate account of short-
term uncertainty in factors such as weather and in the precise
trajectory of peak demand growth, as well as to add both realism
and a better representation of the spread of risk, recognizing the
fact that each peak demand scenario, although chosen by an ex-
pert, is itself uncertain. They can also model variations in eco-
nomic activity and customer behavior including addition/removal
of demand from a large customer on the network. We therefore
add Monte Carlo simulation of short-term variations by running a
number of independent simulations per scenario (500 in our case
study), which are independently repeated for each strategy in
order to properly represent the spread of risk. The increase or
decrease in the materialized noise over each year is modeled using
a normal distribution with mean 0 and appropriate standard de-
viation, being the single parameter to be chosen by the decision
maker. However, this uncertainty is not restricted to a normal
distribution and any appropriate distribution can be applied pro-
vided that the spreadsheet software can simulate it. While less
fundamental than long-term trends, these smaller fluctuations can
nevertheless have material consequences in the context of de-
mand-side interventions, as the fluctuation may be material to the
scale of the added capacity from DSR. Indeed, not taking account
of such fluctuations can lead to the underestimation of risk, both
financial and physical, varying in degree for different kinds of in-
terventions. If the scenarios for peak demand used in Layer 2 are
“weather corrected” (in the sense that they do not take account of
potential adverse weather conditions), then short-term variations
due to weather may also be modeled in this way in the proposed
tool. Additionally, variations in DSR performance may also be
modeled, which may for instance be lower than expected, either
because of an insufficient number of contracted customers or be-
cause not enough DSR load is online for disconnection when
needed. Similarly, we may lack knowledge over contract price
expectations from DSR customers. All of these smaller scale un-
certainties can also be simulated, but are not limited to, using a
standard normal distribution with an appropriate mean and
standard deviation. The noise term, which models the aggregate
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Fig. 1. Methodology flowchart.
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effect on peak load of all such small scale uncertainties, is
simulated repeatedly and independently for each strategy and in
each scenario, and in each case the required physical and financial
risk metrics are calculated across these sets of independent
simulations.

3.2. Tipping points and decision rules

The tipping points, which are used to define flexible invest-
ment strategies, are expressed as simple decision rules. These
decision rules should reflect the realistic and rational actions of
the decision maker. A particularly important consideration is that
the decision rules should only use the information that is available
at the time of the decision itself. While this of course means that the
subsequent stranding of assets cannot in general be ruled out, it is
the only realistic approach to modeling decision making (indeed,
any RO model which permits decisions to be taken on the basis of
future information will give artificially high values to flexible in-
vestments). This point is well illustrated by the issue of con-
struction lead times, which are typically significant for all inter-
ventions and in particular for traditional reinforcement. Because of
these lead times, the year of commitment to a particular inter-
vention should take into account the anticipated rate of growth in
peak demand, aiming to finish construction or implementation
before peak demand grows excessively. In order to avoid using
future information not known at the time of commitment, a
method for projecting demand forward must be specified. In our
tool this is achieved by specifying a “best-view” scenario for de-
mand growth, representing the trajectory of future demand that
the expert considers to be the most likely future to occur. The best
view forecasts are applied on a rolling basis by adding the corre-
sponding yearly change in peak demand under the best view
scenario to each available scenario of demand growth. In this way,
investment decisions can be simulated in a realistic manner by
considering the imperfect information provided by the best view
forecasts.

These decision rules, including lead times and best view pro-
jections as appropriate, are then applied year after year, looking
along each simulated demand path in turn. In this way, for each
Monte Carlo simulation (for each strategy and in each scenario)
the year in which each intervention is made (up to three in each
defined strategy) is determined.

3.3. Cost and risk metrics

Once the timing of each intervention has been determined by
application of the above decision rules, both the financial cost of
interventions and the trajectory of the network's capacity are
known. For each strategy, the distribution of costs and physical
risk may then be calculated across the set of Monte Carlo simu-
lations, from which key metrics may be calculated. Examples of
such metrics are.

) Financial indicators such as the average net present cost (NPC).
) Physical risk indices such as the number of times peak load
might not be met or the amount per year of excess peak load
over capacity.

) Other decision theoretic metrics such as least worst regret
(Carpaneto et al., 2011a, 2011b).

A flowchart illustrating the entire methodology is presented in
Fig. 1.
4. Data – case study description

To illustrate how the model works, we first examine a simple
investment decision using three scenarios for peak demand
growth (illustrated in Table 1) and comparing two different in-
vestment strategies. For illustrative purposes we will first use the
data in Section 4.1 to perform a standard scenario analysis, de-
termining the cost of two different investment strategies under
each scenario. In Section 4.2 we will then proceed to apply our
proposed RO spreadsheet tool to the comparison of the two al-
ternative investment strategies.

In this case study, the abovementioned standard deviation is
set equal to 0.06 MVA, being 0.5% of the initial peak demand level
(15.45 MVA), following discussion with the network operator.
Other numerical assumptions include a 4.5% discount rate as re-
quired in the Regulator's CBA (different discount rates may also be
applied to the same case study in order to provide other financial
perspectives). We assume that relevant forecasts of peak demand
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Table 1
Peak demand scenarios.

Years 0 1 2 3 4 5 6 7 8 9 10

S1 15.45 15.88 16.09 16.12 16.27 16.63 16.68 16.84 17.03 17.23 17.40
S2 15.45 15.61 15.71 15.79 15.95 16.10 16.36 16.44 16.61 16.80 17.01
S3 15.45 15.50 15.57 15.60 15.69 15.86 16.05 16.10 15.92 15.73 15.70

Fig. 2. Cost breakdown for reinforce (R) strategy.

Table 2
R strategy inputs.

Input name Numerical value

Lead time (from year committed to year delivered) 2 years
Capacity added from intervention 1.50 MVA
Main investment cost d1200k
Spread of costs (dk)–year committed d0
Spread of costs (dk)–yearþ1 d204k
Spread of costs (dk)–yearþ2 d996k

Table 3
DSR-R strategy inputs.

Input name Numerical value

Lead time (from year commitment to year delivered) 1 year
Maximum DSR customer availability 0.90 MVA
Average size of DSR customer contract 0.30 MVA
Initial DSR network automation costs d20k
DSR contract set-up cost d8k per customer
DSR customer automation d25k per customer
DSR payment to contracted customer d20k per MVA per year
Ongoing costs (remittances, automation maintenance
and contract management)

d1.25k

Minimum DSR contract period 3 years
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are available until 2026, thus considering a timeframe of 10 years.2

The network in question consists of a 33 kV primary substation
with two 11.5/23 MVA transformers supplied on a 33 kV radial
network, feeding approximately 10,000 customers, and has a firm
capacity of 16 MVA. If peak demand grows as predicted in scenario
S2 (solid yellow/light-color line), the network's firm capacity limit
will be reached in year 5 and continue growing beyond this until
the end of the period of analysis (year 10).

The two investment strategies to be considered are:

) Reinforce strategy (R strategy): in a location where the dis-
tribution network is constrained, consider increasing firm ca-
pacity at the substation by overlaying and replacing 4.5 km of
33 kV circuits, allowing the full capacity of the transformer to be
utilized, at a cost of d1200k with a two-year construction and
installation lead time. This investment would add a large ca-
pacity of 1.50 MVA to the network and the total cost of d1200k
would be divided over the two-year lead time as shown in
Fig. 2. The description of this intervention, as required for the
proposed Excel spreadsheet tool, is given in Table 2. Strategy R
has no future flexibility, as opposed to adding smaller capacity
with the flexibility to expand later, if needed. Despite having a
typically higher total capital cost, the latter variation on this
asset-based strategy would retain some timing flexibility as the
investment would then be made in two stages: in particular, it
could be more economical than strategy R if peak demand
begins to decline before the initially added capacity is exceeded.
However for brevity we choose the ‘one-shot’ strategy R in this
case study to represent network reinforcement; for consistency
the same approach to reinforcement is also taken in the next
strategy described below.

) DSR then Reinforce-if-necessary strategy (DSR-R strategy): al-
ternatively, DSR is deployed in the same location before adding
any line and/or transformer by upgrading and automating the
network to enable C2C operation at a cost of d20k with a one-
year lead-time for installation and a future payment of d20k/
MVA/year for availability of DSR (and no additional payment for
utilization in the event of a fault). If peak demand continues to
grow beyond the capacity added by this DSR intervention, then
the substation reinforcement described in Table 2 would also
subsequently be made, but if this tipping point is not reached
then the substation reinforcement could be entirely avoided.
Table 3 shows inputs for the DSR intervention required in our
spreadsheet tool (the inputs for the reinforcement intervention
are the same as in Table 2).
2 In order to account for longer timeframes, such as the end of RIIO-ED2 in
2031 or the 45-year time horizon suggested by Ofgem, residual values may be
included in the model to take account of residual asset values in 2031.
5. Results and discussion

5.1. Standard scenario analysis

In this section, we will perform the simplest possible analysis,
in which the optimal sequence of interventions is determined for
each of the three scenarios. This analysis is by nature ‘ex post’ and
reveals the best possible interventions. While this provides useful
information, it is of course unrealistic as it does not reflect the fact
that interventions are made only on the basis of the information
available at the time of the decision itself, as discussed in Section
2.2 above.

Under scenario S2, the least-cost strategy would be the R
strategy: commit to reinforcement in year 3 and reinforce the
network by adding an extra 1.50 MVA capacity at year 5, ac-
counting for the 2-year lead time, as shown in Fig. 3. Based on a
discount rate of 4.5% as in Ofgem's pre-tax Weighted Average Cost
of Capital (WACC) (Ofgem, 2013), this strategy leads to a NPC of
d970k. The alternative DSR-R strategy of delaying the investment
Fig. 3. Investment under scenario S2 (best view) for R strategy.



Fig. 4. Investment under scenario S1 (high load) for DSR-R strategy. (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 6. Uncertainty around scenario S2.
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by utilizing DSR and adding a (non-physical) capacity of 0.9 MVA
before reinforcing, leads to a NPC of d979k, of which d50k comes
from DSR and d929k from reinforcement. Since the requirement
for additional capacity in the final year is greater than the max-
imum amount of DSR available (0.9 MVA), a reinforcement is in-
evitable. However, if DSR availability were set to 1.50 MVA then
DSR alone would suffice; the NPC would then be d194k and re-
inforcement would thus be avoided. The maximum limit on DSR
customer availability is therefore a crucial assumption in the
assessment.

However, if demand grows faster than anticipated and scenario
S1 occurs (solid dark-blue/dark-color line in Fig. 4) then the sub-
station reinforcement would need to be installed much earlier, by
year 2. Because of the effect of financial discounting, this leads to
an increased NPC of d1107k. In this case, the alternative DSR-R
strategy adding a (non-physical) capacity of 0.9 MVA, could po-
tentially delay the investment by 2 years, as DSR can be used from
year 2 until year 7, thus allowing time for the substation re-
inforcement to be installed in year 7. Due to financial discounting
this strategy would in fact lead to a lower NPC of d1040k. In this
case, the C2C intervention can be considered an economically at-
tractive means to defer costly traditional investments, as illu-
strated graphically in Fig. 5. Finally, if demand initially grows more
slowly than anticipated and indeed subsequently falls, as in the
case in scenario S3 (dashed blue/light-color line), then the C2C
intervention can be used to avoid the substation reinforcement
entirely (over the 10-year timeframe of this analysis). In this case,
the DSR-R strategy proves to be financially much more attractive,
since there is effectively no stranding of assets and the NPC is d63k
compared with an NPC of d928.5k for strategy R.

5.2. Extending scenarios via Monte Carlo simulation

We now demonstrate the effect of adding Monte Carlo simu-
lations to the simple scenarios above, as discussed in Section 3.1.3.
Fig. 6 illustrates the effect of adding noise terms around Scenario
S2 with a standard deviation of 0.5% in each year. In particular, we
Fig. 5. Investment under scenario S3 (low load growth) for DSR-R strategy. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)
see that each simulated path now passes the 16 MVA capacity
limit at a different time, thus extending the range of the three
scenarios defined in Table 2 and providing a more realistic spread
of potential outcomes.

5.2.1. Financial cost metrics
For each of the Monte Carlo simulations illustrated in Fig. 6

above (layer 3), for each scenario (layer 2) and within each strat-
egy (layer 1), the decision rules may now be applied and the fi-
nancial cost and spread of physical risk evaluated as described in
Section 2.2. The financial cost is evaluated by discounting to obtain
the NPC in each Monte Carlo simulation, and the physical risk is
evaluated by recording the instances of excess load and their ex-
tent year by year. In the spreadsheet tool, this information is then
summarized across simulations in the form of graphical empirical
cost and excess load distributions. Fig. 7 below provides an illus-
tration for the DSR-R strategy showing the empirical distribution
of the NPC in each of the three scenarios. As can be seen, under
scenario S1 (dark-blue/dark color), all Monte Carlo runs give NPC
values above d900k since all the DSR is used as much as possible to
defer capacity investments but is still not sufficient to substitute
for load growth in future years; hence a capacity reinforcement is
also needed. The NPC therefore combines DSR costs with re-
inforcement costs in later years. For scenario S2, on the other
hand, DSR can, for some Monte Carlo runs, suffice to satisfy the
required demand levels in all years; hence, the only costs incurred
are from investing in DSR. This is seen by the distribution on the
left-hand side (in yellow/light color, behind S3), where the costs
do not exceed d180k. However, for other Monte Carlo runs, a re-
inforcement strategy, without any DSR, is needed; this is displayed
by the yellow distribution on the right-hand side, where costs are
between d840k and d1020k. Finally, for scenario S3 (light blue), in
almost all Monte Carlo runs DSR is enough to satisfy the demand,
hence most costs are below d220k, yet, for some Monte Carlo runs,
a reinforcement is needed (seen from the infrequent costs be-
tween d900k and d960k). These cost distributions can therefore
quickly provide a decision maker with a graphical interpretation of
the costs involved with a DSR-R strategy when considering each
distinct scenario.
Fig. 7. Scenario-specific net present cost for DSR-R strategy. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this
article.)



Table 4
Scenario weights chosen by expert input.

Scenario Weight (%) Volatility (%)

Scenario S1 (high load) 20.00 0.50
Scenario S2 (best view) 60.00 0.50
Scenario S3 (low load) 20.00 0.50

Fig. 8. Overall weighted net present cost distributions for strategies R and DSR-R.
(For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)

Fig. 9. Boxplot of excess load per year. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)
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5.2.2. Analysis across scenarios and optimal strategy selection
The empirical scenario-specific histograms illustrated in Fig. 7

may now be combined, given a set of scenario probability weights
chosen by expert input, as illustrated in Table 4 (this is mathe-
matically consistent, and corresponds to applying the Law of Total
Probability). This overall weighted empirical distribution is illu-
strated for both strategies in Fig. 8, where the green/light-color
distribution represents the NPC for the DSR-R strategy and in red/
dark-color for the R strategy.

For each considered strategy, the overall average cost and fi-
nancial risk metrics (see Section 2.3) may be calculated from this
overall cost distribution, as in Table 5. Selection of the optimal
strategy will typically be by lowest overall average cost, subject to
the preferred strategy having financial risk metrics at an accep-
table level. It should be noted, however, that the availability of
overall cost distributions in our tool enables a wide range of
possible metrics, and these metrics may be applied as the user
prefers in order to select the optimal strategy.

5.2.3. Physical risk metrics
The issue of physical risk is also significant in this study since

using lower capacity interventions such as DSR while waiting for
more information exposes the network to the risk of a rapid in-
crease in demand, which might not be quickly addressed due to
lengthy construction times. As described in Section 5.2, this excess
demand in the network is recorded in each Monte Carlo simula-
tion. From this information, empirical distributions may again be
calculated as described in Section 5.2.1 (per scenario) and Section
5.2.2 (overall). Thus the physical risk associated with excess de-
mand may be analyzed in just the same way as financial metrics.
This feature allows each investment strategy to be assessed jointly
in terms of both its financial cost and physical network reliability.
Fig. 9 provides a useful graphical illustration of this reliability in-
formation using boxplots.
Table 5
Results.

Metric Cost of R strategy
(dk)

Cost of DSR-R strategy
(dk)

Average NPC 981 647
Standard deviation of NPC 41 299
Since different interventions provide different amounts of ca-
pacity, the boxplots provide a visual comparison between strate-
gies of the level of reliability achieved by each strategy. In Fig. 9,
the red and blue boxes, for the R and DSR-R strategy respectively,
represent the initial (lower) 75% of the distribution, while the
upper whiskers represent the remaining 25% of the distribution, in
other words the higher, more extreme cases. For instance, in year
2016, 75% of all Monte Carlo runs for the R Strategy (red) give an
excess load of 0 MVA, since no box is present, while at most 25% of
them have an excess load between 0 and 1.3 MVA. Similarly, in
year 2017, 75% of the distribution, in other words 75% of all Monte
Carlo runs, gives an excess load between 0 and 0.10 MVA, while
the most extreme 25% give an excess load between 0.10 and
1.50 MVA. From Fig. 9, it is clear that the lower average cost of the
DSR-R strategy (blue) is balanced by a correspondingly higher
physical risk profile compared with the traditional reinforcement
R (red). While there is no more than a 25% likelihood of exceeding
capacity (excess40 MVA) in all years except for 2017 and 2018
under the R strategy, since at least 75% of the distribution is 0
(there are no boxes apart from in 2017 and 2018), there is a far
greater probability of having positive excess load under the DSR-R
strategy as seen from the presence of boxes in all years post-2016.
Indeed, in all years there is a higher likelihood of exceeding ca-
pacity with the DSR-R strategy, even though the empirical excess
load never exceeds 1.82 MVA (and the 75% upper quartile never
exceeds 0.3 MVA). There therefore exists a trade-off between cost
and reliability for the two considered strategies, which a decision
maker can now assess on a quantitative basis using the proposed
RO model. The decision maker could assess whether each strategy
meets a threshold in terms of acceptable risk, or, beyond this, may
assign a corresponding economic value to the physical risk me-
trics, based on how the DNO might mitigate that risk operationally
or, e.g., be penalized under their regulatory framework in the
event that customers were off supply.

5.3. DSR pricing

Although the overall average NPC for the DSR-R strategy
(strategy 2) is lower than for the traditional reinforcement R
strategy (strategy 1), with respective mean costs of d647k against
d981k, this difference clearly depends on input assumptions re-
garding the cost of DSR. Since DSR is an emerging technology,
these costs may be uncertain. The decision maker can therefore
assess the sensitivity of this conclusion to an estimated level of
DSR costs by determining the maximum DSR payment that the
DNO is willing to pay its DSR customers for the opportunity of
using DSR as an alternative to asset reinforcement. In other words,
one can assess how close the intended DSR payment price of d20k/
MVA/year per customer from Table 3 is to the “break-even” value
that the DNO is prepared to pay for avoiding a network



Fig. 10. Breakeven point for DSR payments – in scenario S2 (red) and Overall
analysis with all scenarios (green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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reinforcement, which is set by the average cost of the traditional
reinforcement. This question may of course also be addressed
through standard scenario analysis. Taking a deterministic ap-
proach, the probability weight of the ‘best view’ scenario S2 for
example could be set to 100%, while S1 and S3 are set to 0%. Then,
by varying the DSR payment amount from d20k/MVA/year per
customer to d70k/MVA/year per customer for the DSR-R strategy,
we see from Fig. 10 (red) that the breakeven DSR payment is d36k/
MVA/year. This means that any DSR payment lower than d36k/
MVA/year would result in the DSR-R strategy having lower average
costs than the R strategy assuming the best view scenario mate-
rializes. However, for DSR payments greater than d36k/MVA/year,
the R strategy would on average be the cheaper alternative under
scenario S2 on the basis of such a deterministic analysis.

The flexibility provided by DSR has even greater value when
there is uncertainty as shown in Fig. 10 (green). Our RO illustrative
example above now considers all three scenarios, S1, S2 and S3,
each with their associated probability of occurrence taken from
Table 4 (layer 2) and with Monte Carlo simulations to represent
small-scale uncertainty (layer 3). In this example, the “break-even”
DSR payment amount can reach nearly d185k/MVA/year, over five
times greater than the value calculated above using a standard
scenario analysis of scenario S2. This means that taking account of
uncertainty in future demand growth through the three scenarios
results in a much greater value for the flexible DSR strategy. It
hence allows the decision maker to assess the situation once un-
certainty gives way to information and to react appropriately if
demand grows more quickly or more slowly than originally an-
ticipated. As discussed in Section 5.1, a significant part of this value
arises due to the ability of DSR to avoid committing to a classical
reinforcement, which subsequently becomes a stranded asset if
peak demand then falls, as is the case in Scenario S3.
6. Conclusions and policy implications

This paper discusses the need to account appropriately for
uncertainty in long-term decision making and the valuation of
network investment plans, as accounting for uncertainty can sig-
nificantly change the business case for flexible capacity-based
services for postponing or even avoiding costly irreversible re-
inforcements. We have presented a case study illustrating that
such flexible interventions can have significantly higher value
when uncertainty is modeled, as compared to standard determi-
nistic scenario analysis. We have also argued that inappropriate
modeling of the information available to decision makers at the
time of intervention (that is, assuming knowledge of the future)
may conversely lead to the overestimation of the value of flex-
ibility. We have therefore presented a practical RO tool that
combines sophisticated RO analysis for valuing flexible investment
strategies under uncertainty with the simplicity, practicality and
transparency of a “playable” Excel-based spreadsheet tool that
reflects the CBA tools currently used by DNOs to inform the Reg-
ulator on their investment plans. Because of this feature, we re-
commend network Regulators to implement this framework into
their CBA tools. In particular, this tool builds on the standard ex-
isting approach of scenario analysis, incorporating this within a
multi-layered model for uncertainty and flexibility. By modeling
long-term and shorter-term uncertainties separately, we allow
different investment strategies to be compared at the scenario
level while accounting for uncertainty, and to then be combined to
give an overall, probability-weighted analysis that is mathemati-
cally consistent. Costs and physical risks are calculated as dis-
tributions so that the decision maker may use a range of metrics
based, for example, both on averages and on risk measures in
selecting the preferred investment strategy. By directly comparing
the value of DSR on a like-for-like basis with asset-based re-
inforcement strategies, a redistribution of the “profits” realized
from significantly reducing network investment costs can now be
assessed on a mathematically consistent and quantitative basis. As
a key policy recommendation arising from our work, there is a
need to change the current regulatory framework based on de-
terministic investment analysis and move on towards a probabil-
istic approach, such as the one presented in the paper. In fact, the
modeling of uncertainty is the only way to explicitly quantify and
acknowledge the value of flexible solutions such as DSR, and thus
accrue all the relevant economic benefits mentioned above.

The breakeven analysis also provides a helpful indication of the
sensitivity of these RO results to assumptions around DSR pay-
ments, which at present may be uncertain. Several conclusions
regarding the value of DSR for planning can be drawn, together
with corresponding policy implications. The provision of a flexible
capacity-based DSR service may result in substantial cost savings
through the deferral or avoidance of costly capital investments.
Reducing capital costs in this way can translate into benefits for
different actors in the value chain, and particularly for end cus-
tomers to whom network costs are eventually passed on. As the
first of its kind, our model allows an estimate of the economic
value of DSR services, which could be used to inform DSR con-
tractual arrangements based on the DSR payment price calculated
by our model as an upper limit. If the contracted DSR price is equal
to the upper limit on DSR price suggested by the model, then all of
the cost savings of DSR versus traditional reinforcement are
transferred as an economic benefit to the contracted DSR custo-
mers. If the contracted DSR price is lower, then the remaining
economic benefit accrues to the network operator. In practice in a
regulatory framework such as RIIO-ED1, any efficient cost saving is
shared as a benefit to the DNO and a benefit to bill-paying cus-
tomers. It is therefore in the interests of the DNO and its collective
customers to contract for DSR at the minimum price possible.

Thirdly, the real options decision-support model has also been
developed to rapidly highlight that differences exist in the eco-
nomic perspective of the regulated DNO business and of customers
in general. The DNO will use an appropriate discount rate for its
business and be subject to financial incentives such as the In-
formation Quality Incentive. Yet, from the perspective of bill-
paying customers in general, there might be a lower discount rate,
a cost to finance the DNO's investments, and the regulator might
assign values to certain effects, which do not have a financial effect
on the DNO.

The existence of these two policy perspectives (DNO vs. cus-
tomer) then presents an interesting practical point that the strat-
egy selection from our proposed model can help assess. When a
strategy is favorable to the DNO but not to its customers in general,
regulatory oversight of investment projects is needed to ensure
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that such a strategy is not followed. Conversely when a strategy is
favorable to customers but would financially penalize the DNO
business, this highlights situations in which the regulatory fra-
mework may need to be altered. Finally, when both DNO and
customer perspectives lead to the same choice of strategy, this
suggests that what is good for the DNO business is also good for its
customers.

It is worth noting that our model provides metrics to enable
decision-makers to easily and clearly understand the relative scale
and likelihoods of both economic and physical risk effects arising
from different investment strategies and different perspectives.
However, as the proposed RO tool is intended for use in planning
rather than for operational decision-making, the operational be-
havior by the DNO in response to contingencies such as ICT fail-
ures or contractual limits on the frequency of DSR requests, are not
modeled here. Instead, we assume that the DNO is able to react to
operational contingencies within the constraints of all operational
safety regulations, within its capacity limits defined by the short-
term emergency ratings of the equipment or in the extreme by
deployment of temporary generation. The model can also help
assess the amount of extra DSR to be contracted to guarantee that
the minimum required level of DSR is available when needed, for
instance due to uncertainty in customers not responding when
called upon. In practice, the DNO may however consider a trade-
off between reliability impacts when considering DSR, since a DSR
strategy could decrease Customer Minutes Lost (CML) but increase
Short Duration Interruptions (SDI). Nonetheless, the additional
operational flexibility of the demand response solution proposed
is expected to improve network reliability by (i) reducing re-
storation time decreasing CML to restore supply within three
minutes once a contingency occurs; (ii) increasing SDI via strategic
automation if the network in question is not currently automated
(however these interruptions are likely to be less than three
minutes and hence would not be regulated); (iii) redistributing
power flows by potentially alleviating congestion in some lines
and hence releasing some capacity by interconnecting adjacent
radial feeders, and (iv) managing thermal or voltage constraints
during emergency conditions.

However, the proposed tool gives a high level indication of the
potential risk in the presence of DSR, which is indeed potentially
suitable for the high-level decision making information that it
aims to provide. For more specific information on the reliability
consequences of a solution, more detailed reliability analysis
should be performed, as thoroughly investigated within the C2C
project (Syrri and Mancarella, 2016) with results indicating that
DSR solutions might be attractive also from a reliability point of
view, as also found in (Kopsidas et al., 2016).

Improvements to the current model could include the DNO's
regulatory financing costs, or the regulator's cost-reduction in-
centives relevant to losses, associated emissions, and reliability at
the distribution level. Addressing such areas (which is work in
progress) would take the model described in this paper closer to
the cost treatment in Ofgem's CBA framework for RIIO-ED1, but
once again this needs to be done under a proper uncertainty-
aware framework. An appropriate analysis of these incentives and
social costs is required to truly determine the consequences of
different investment schemes – both to the distribution network
operator company and to the Regulator (for a relevant policy-or-
iented, social perspective), so that flexible solutions can be ade-
quately compared on par with traditional network reinforcements.
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