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Executive summary  
The aim of this report is to provide a comprehensive overview of Real Options (RO) analysis 
and risk assessment, with focus on potential applications to flexible network investment 
under uncertainty with Demand Side Response (DSR), and to propose a relevant RO model 
that could be readily implemented in a spreadsheet tool.  

In order to do so, after presenting the main features of options in finance and real options in 
engineering based on relevant state of the art, we review current approaches that have 
been undertaken for decision making under uncertainty by National Grid in their Network 
Development Policy document and by ENWL in their “strawman” RO spreadsheet example. 
Finally, based on our expertise, experience and studies carried out during this work, and our 
understanding of ENWL’s requirements as to a RO engine to be developed in Excel, we 
propose a novel RO methodology and describe relevant spreadsheet architecture.  

The proposed tool, exemplified in a hierarchical spreadsheet implementation, is based on a 
multi-layer receding horizon approach to RO analysis of flexible network investment under 
uncertainty with specific inclusion of DSR. The model is organised in terms of strategy (layer 
1), long-term scenarios (layer 2) and short-term Monte Carlo simulations (layer 3), thus 
bringing together and deploying the optimal features of different RO approaches as fit for 
the purpose of this work. The proposed tool can be flexibly adapted to take decisions on a 
regular basis (for instance, every year), and the underlying model features the upsides of the 
receding horizon approach successively deployed in the engineering applications of optimal 
control theory and also makes up at the same time for some limitations that implementation 
in a relatively simple tool brings.  

Different metrics and decision criteria are discussed and can be implemented in the tool, 
based on probabilistic representation of relevant random variables and allowing specific 
consideration for financial and physical risk analysis for different strategies to be considered. 

Useful outputs of the proposed tool may include: 

 Optimal investment strategy for the current year (decision time), to be reassessed with 
receding horizon every year in the light of the projected scenarios and estimated 
uncertainty. 

 Ranking of the considered decision strategies based on the input intervention 
alternatives (the “design options”) by different metrics (expected cost, expected cost 
weighted with risk metrics, least worst regret, weighted least regret, and so on). 

 Detailed breakdown of the probabilistic distribution of costs of each strategy in each 
scenario plus the overall probability weighted distribution of costs for each strategy, so 
that fully informed and transparent decisions can made.  

The tool can be applied in various ways besides determining optimal investment strategies, 
amongst others for optimal DSR pricing and to quantify financial and technical risks 
associated to specific interventions and suitability of an asset portfolio to meet relevant 
techno-economic requirements set out by the Regulator.  
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1. Introduction 

The primary aim of the work summarised in this report is to provide strategic indications to 
ENWL as to the development of a “Real Options” (RO) method, to be later implemented in a 
relatively simple spreadsheet tool, which is capable to give a techno-economic and financial 
assessment of different options for capacity increase against load scenarios. In particular, 
specific focus will be put on describing competition and complementarity between network 
asset reinforcement and Demand Side Response (DSR) alternatives. The latter case can for 
instance be represented by the C2C methodology for post-contingency DSR, but in general 
any type of DSR interventions could be considered in this context.  

The critical points to justify the need for this work is the increasing uncertainty in forecasts 
of net electricity demand changes, particularly due to the arrival of low carbon distributed 
technologies both on the demand side (e.g., electric heat pumps and electric vehicles) and 
the supply side (e.g., photovoltaics, wind and cogeneration). This uncertainty makes it 
difficult to make long-term investment decisions that might potentially lock into future 
stranded assets. Hence, having available flexible investment options that might easily be 
converted into something else in the case the future were to develop differently from 
expected would be extremely valuable. In this respect, while flexibility is commonly 
exercised in real-world management decisions, the investment analysis tools that are 
traditionally adopted do not properly reflect such conditions. In particular, the Discounted 
Cash Flow (DCF) methods commonly utilised for Cost Benefit Analysis (CBA) as in Ofgem’s 
CBA spreadsheets for RIIO-ED1 implicitly assume that:  

 Investments are reversible, while network investment projects suffer from large sunk 
capital costs.  

 Cash flows are deterministic and certain for the entire lifespan of the project, while 
future forecasts/scenarios are highly uncertain.  

 If investment is not made now, it is foregone forever, while this decision can be 
postponed or changed based on “active” management. 

 A single discount rate is applied to all cash flows, while capital investment (typically 
managed by the firm) may be much safer than future cash flows based on alternative 
options. 

In particular, while DCF analysis assumes that the investment decision is a now-or-never 
decision and if the NPV is negative then it is foregone forever, in reality the investment can 
be delayed until part of all of the underlying uncertainty is resolved. This can avoid getting 
locked in with stranded assets in unfavourable scenarios. For example, if during the planning 
stage demand does not grow as expected, the decision maker might not invest right away 
but rather wait-and-see the out-turn of demand, and decide either to invest if demand goes 
above a certain threshold or to keep going with DSR and possibly wait more to see the 
development of uncertainty. Extensive examples on alternative developments of potential 
futures turning out into completely different options are reported in the first C2C project 
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Deliverable on Work Package 2 [Cesena and Mancarella, 2013]. Hence, there is a clear 
flexibility value in having the opportunity to delay the investment. In the same way, there is 
potential value in accelerating, abandoning or altering investment decisions based on how 
the future develops. Ignoring this flexibility causes many investment decisions, and 
particularly the highly flexible ones, to be undervalued and in this case never carried out, at 
the cost of potential asset stranding.  

While the above theoretical and practical gaps between traditional DCF-based investment 
analysis methods and flexible decision making perspectives cannot result in correct 
valuations, it is to some extent possible to deploy tools for decision making under 
uncertainty which have been developed in other disciplines such as finance, and model the 
main uncertainties so as to reflect as closely as possible how a human decision maker carries 
out the best decision at a given time, once current conditions and possible future ones are 
known. Real Options theory, based on the rationale of financial option pricing methods, was 
developed precisely to fill these gaps, so that flexible investment strategies can be 
developed to resemble realistic decision making processes. In particular, the strategy which 
is ultimately selected should be flexible enough to remain acceptable over a range of 
possible future scenarios, taking full account of the future adaptations that will be available 
as new information arrives over the timeframe of the analysis. In addition, the tool that is 
aimed at should be flexible enough to be reusable while uncertainty is resolved and the 
future unfolds. In this context, the advantage of selecting a Real Options approach to deal 
with uncertainty is that in RO analysis the task before us is to choose a ‘best’ strategy among 
the list of possible flexible strategies, taking into account the range of possible futures and 
our subsequent adaptations to them, together with any information we may have about the 
relative likelihoods of these futures. In particular considerations such as the average future 
cost (or equivalently benefit) and the potential variability in this future cost are important in 
selecting the best strategy. On the other hand, while considering the likelihood of possible 
futures to occur and weighting them in a relevant model provide important insights relative 
to considering only one future, such an approach, based on averaging, does not provide 
information about retrospective views of the risk of undertaking particular decisions. For 
instance, taking into account the obvious fact that we will only experience a single future in 
reality, the amount of retrospective ‘regret’ we may potentially face in each particular 
future, irrespective of how likely or unlikely that future may seem to us at the present time, 
could also potentially be an important factor for inclusion in our analysis and in the RO 
approach as well, and will be expanded upon throughout this report. 

This report is organized as follows. In Section 2, we discuss general aspects of decision 
making under uncertainty. Starting from the concept of financial options, the focus is on real 
options modeling with engineering applications, and we provide a comprehensive critical 
review of possible RO evaluation approaches and their suitability for network investment 
problems. Risk analysis and relevant techniques are also discussed. We review in Section 3 
the National Grid’s Network Development Policy document (including discussion on the 
“Spackman” approach to network investment costing) and the ENWL’s “strawman” example 
spreadsheet, and we give relevant comments and feedback. Section 4 is the “core” of this 
report, where we propose a novel multi-layer RO model for flexible network investment 
valuation and we give indications as to what a possible architecture for implementation of 
the model in an Excel workbook could be. Section 5 contains the concluding remarks. 
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2. Decision making under uncertainty and real options valuation: state of 
the art and understanding based on previous work 

The objective of this Section is to introduce the general understanding on techniques for 
decision making under uncertainty and RO according to the work carried out so far at the 
university, in line and additionally to what was presented at the November workshop.  

2.1. Options in finance  

Financial markets are well known to be characterized by uncertainty. Different securities 
such as stocks, bonds, commodities and so forth have different levels of expected or average 
performance. At one extreme, US government treasury bills were long regarded as being 
risk-free investments. Stocks in companies such as Apple, in contrast, offer uncertain returns 
and therefore must offer the investor a higher expected return than US government 
treasury bills (at least over the long term), as otherwise very few investors would regard 
such a stock as attractive in comparison with treasury bills. Since the typical investor’s choice 
is between a huge number of different market securities each with different expected 
returns and volatility of returns, the study of optimal trading in financial markets could 
therefore be reasonably regarded as the study of financial market uncertainty. 

The study of uncertainty is approached by looking for structure, that is to say, repeating 
patterns or tendencies that are expected to persist in future. This should not be confused 
with seeking to predict the future exactly, rather it is concerned with understanding the 
ranges of possible futures and their relative likelihood. In financial markets it was already 
observed by Bachelier in 1900 [Bachelier, 1900] that the structure of stock market returns 
was similar to the structure of certain abstract mathematical objects. This observation 
opened the door to the study of mathematical finance, since it now argued that studying 
stock market uncertainty was equivalent to studying a branch of mathematics (now called 
stochastic process theory; independently, Einstein himself studied stochastic processes in 
the completely different context of physical diffusion).  

The simplest option contract is perhaps the European option, which gives the holder the 
right but not the obligation to trade a specific stock, at a specific price, at a specific future 
point in time. The rational option holder therefore only exercises her option if it is 
economically favourable to do so on this so-called expiry date, otherwise the option expires 
worthless. In this way, the study of option values is not simply concerned with 
understanding the repeating patterns in stock price behaviour, but additionally it is 
concerned with understanding the value of the flexibility offered by the option contract. 
Although Bachelier provided option pricing formulae, it was not until the rediscovery of 
Bachelier’s thesis by Samuelson in 1965 and subsequent work of Black, Scholes and Merton 
[Black, 1976] that it began to be more widely understood how to put a value on flexibility in 
financial markets. By making rather strong, but nevertheless clearly acknowledged, 
assumptions about the structure of financial markets Black, Scholes and Merton were able 
to obtain straightforward expressions for the value of simple financial options. Their 
formulae had not only the attraction of being simple to write down and use, but also of 
requiring no further expert input: they can be regarded as algorithms, which simply observe 
today’s stock market prices as input and return the option values as output, with only a 
single, relatively easily estimated parameter (the volatility) for the user to provide. It is 
therefore with their contribution that the theory of mathematical finance and option 
valuation began to gain traction. 

The success of mathematical finance must be balanced by the price of this success, which is 
a possible temptation to trust its formulae without acknowledging the strong assumptions 
which make it valid. Of course these strong assumptions are so well-known among finance 
experts that while they were carefully stated in papers of the 1970s, much less care was 
typically exercised tens of years later when, for example, the nascent field of Real Options 
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Analysis began the task of translating the insights of mathematical finance from the financial 
markets into the field of real commercial projects. It is beyond the scope of this report to 
give a full review of either the typical assumptions made in the field of mathematical 
finance, or of the size or severity of the potential consequences of neglecting to check the 
validity of these assumptions in the particular setting of Real Options Analysis for 
distribution networks; instead we will highlight these issues on an as-needed basis. From the 
opposite side, the qualitative insights provided by making assumptions that are known not 
to hold (but acknowledged as such) may potentially provide useful guidance and rules of 
thumb that would not be clear from a more complex and detailed analysis. However, we 
note that when large investment decisions are taken using Real Options Analysis then the 
decision maker should take proper care to satisfy themselves that the assumptions of the 
analysis, including the application of any analysis from mathematical finance, are 
understood and clearly acknowledged. 

2.2. Real Options in engineering  

2.2.1.  When to apply Real Options analysis?  

Just as financial options provide a contractual right to take an “optional” action which will be 
exercised by the rational holder only if favourable conditions occur, engineering projects 
(and network projects in particular) are somehow naturally “packed” with (investment) 
decision options, such as for instance the use of demand side response (DSR) as an 
alternative to network reinforcement, securing additional space in a substation to place an 
additional transformer if needed, opting for like for like replacement or with a larger asset to 
avoid subsequent early load-related reinforcement, staging the investment over time 
through two smaller ones, and so on. Hence, in general there are a number of questions that 
can be associated to engineering investment problems, which can be categorised 
schematically as “what” (and “how much”) and “when”. However, for a particular flexibility 
to bear a RO value, there are a few conditions that need to be satisfied, namely: 

 Whole or partial irreversibility of investment costs. In fact, if all investments were 
perfectly reversible there would be no need for RO analysis since all strategies would be 
seen to be equivalent by simply reversing any decision that would turn out suboptimal 
and investing into the optimal ones instead. In the context of network investment this 
condition essentially always applies, since even when an investment decision can be 
reverted or the investment can be cashed into other forms, there is typically an 
irreversible loss of capital due, for example, to high sunk costs or depreciation of the 
used asset’s value compared to its investment cost. The irreversible part of the network 
investment is therefore that fraction of the investment cost that cannot subsequently be 
recovered (for instance, by redeployment at alternative locations), together with any 
consequentially lost costs and benefits.  

 Uncertainty in future movements of key variables, which significantly influence future 
cash flows (perhaps by affecting the adequacy of current investments). In the context of 
network investment these may include uncertainty in demand growth, uncertainty in DSR 
to get contracted or to be available when needed, changes in the way cash flows are 
calculated for regulatory purposes, and so on. Alternatively, if the future is known, then 
as indicated above DCF analysis is adequate to make decisions. In this respect, it is worth 
noticing here that RO analysis always builds upon some type of DCF model that takes into 
account time value of money, for instance one DCF model for each possible scenario that 
might be realised. Hence, if a DCF model cannot be built for some reason, neither can a 
RO model. Likewise, multiple possible futures need to be considered in the RO analysis, 
since otherwise the future could be predicted perfectly and therefore DCF would work 
perfectly. 
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 Strategic flexibility to change the course of action, including changing the project timing: 
in particular, the decision maker can usually take intermediate actions such as to invest, 
abandon, defer, expand, contract, in response to uncertainty (for example, from 
unexpected events such new regulation, energy policy incentives, etc), and is free to take 
these actions  and make the relevant adjustments to investment at a number of possible 
times. If an investment needs to be made now or never, there is no flexibility and no 
room for real options analysis: again DCF works well under this condition. 

 
As a result, it is possible to summarise the above statements by saying that the correct value 
to quantify a flexible strategy in the presence of uncertainty and irreversibility is 

 
Project Value = Traditional Net Present Value + Real Option Value 

 
As will also be discussed in the proposed RO model in Section 4, this RO value is calculated 
as an average over the possible futures, with a certain strategy that could be used or not 
used in a given scenario, but whose value would always be positive or at worst zero (if the 
option is not “exercised”), but never negative. Hence, the option value, calculated as an 
average of nonnegative values over the different scenarios, will never be negative either.  

2.2.2. Real Options and flexibility  

Real options do not “create” flexibility, but highlight in a quantitative way the value of the 
flexibility that is available in decision making, which is particularly important in a network 
investment context. As such, it is not that RO thinking favours more flexible projects, but 
simply highlights the benefits from flexibility that other techniques such as those based on 
DCF cannot. The result is that RO analysis allows a fair comparison between flexible and 
inflexible network investment strategies by giving both their fair value. In particular, the 
flexibility that is highlighted is in response to uncertainty: future conditions can turn out 
worse than anticipated but also better than anticipated, and RO provides a methodological 
approach to account for the fact that in reality, decision makers will seek to take advantage 
of future better conditions when they occur and, conversely, will seek to minimise the 
impact of future poorer conditions should they arise. 

Two fundamental types of flexibility exist in engineering projects, which together lead to the 
concept of “strategy” in the context of this work (see Section 4): 

 Flexibility in the timing of the decision. The typical example from finance is the American 
Option, which provides the holder with the right but not the obligation to trade in a 
specific stock, at a specific price, at any time until a given and fixed expiry date. In this 
way, the American option may be regarded as a European option with added timing 
flexibility. An example in the context of network investment is the ability to use DSR 
while waiting to see if demand rises, rather than making the investment intervention 
now. In addition, projects may have multiple inter-temporal options, that is multi-staged 
decisions can be made over time (“when” and “what”; the simplest example from finance 
would be holding two American options which can be exercised independently of each 
other). 

 Flexibility in the design of the project: just as there are a variety of financial options 
available with respect to timing, there are also a variety of financial option designs 
(Vanilla, Binary, Barrier, Bermudan, Asian, and so on). However, such ‘exotic’ financial 
option designs have found rather few parallels in engineering studies. It is therefore 
preferable to distinguish real options design from financial option design, and in 
engineering problems: (i) to simply list all possible designs available to the decision maker 
in the particular problem under analysis; (ii) for each design, to list each possible strategy 
(which generally speaking is a combination of design and timing) that could be used 
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under that design; and finally (iii) to calculate the RO value for each individual strategy. 
For example, given the same long term “final” design for network replacement 
represented by the combination of DSR and asset reinforcement, different strategies 
might differ in terms of when each intervention would be carried out and through which 
“trigger points” (for instance, DSR first until 95% capacity is reached and then reinforce 
the asset, or DSR for a certain number of years and then reinforcement, and so forth).  

2.3. Modelling uncertainty and flexibility in Real Options  

2.3.1. Uncertainty and time flexibility  

Since flexibility is fundamentally the capability to respond to change, thus enabling optimal 
active management, the first critical step in RO analysis is to model the significant uncertain 
variables in the problem. In traditional option theory which mainly deals with stock market 
uncertainty, prices are modelled through various stochastic processes that have been 
established as successful representations of stock movements over time.  

In engineering applications, standard Brownian motion (or Wiener process) or Geometric 
Brownian Motion (GBM), as well as mean-reverting processes (particularly to model 
electricity and gas prices) have been used in the literature. However, for RO applications a 
few substantial issues arise in utilising such stochastic processes. The first and most 
important is that while there are very good arguments to use for instance GBM processes 
for stock prices, there is no guarantee that the model of an engineering variable such as for 
instance peak demand in a network should follow such a process. In addition, 
mathematically it becomes very complex to model such stochastic processes when there are 
more than two correlated uncertain variables, thus potentially negating the mathematical 
benefits of such an approach. Last but not least, most of these processes are difficult to 
justify for the long-term time-scale (i.e., investment decisions) since they implicitly make 
strong assumptions about the future such as constant mean and volatility (which may 
typically not be the case over for instance 30 years). However, suitable modifications can be 
made to and have been proposed for these basic models to make them more suitable to 
specific applications. Also, classical stochastic processes can be suitable to generate short-
term variation attributable to uncertainty or to generate “noise” around longer term 
projections which could for instance be based on scenarios (see below). Such approaches to 
short-term uncertainty generation and the modelling of errors will be used in the model 
proposed in Section 4.  

Another typical approach that can be proposed to model uncertainty is based on scenarios, 
whereby instead of continuous random variation over time the uncertain variable can follow 
specific time trajectories, which are often associated to probability of occurrences. The 
scenario approach takes to the extreme the discretization of the continuous process 
formulation that is carried out in option theory through for instance lattice models. In fact, 
the original model developed by Black and Scholes for option pricing could be applied only 
to European-type options that could be exercised only at maturity. In order to model 
American-type options with possible early exercise other approaches were developed, such 
as continuous models based on more complex theory (the theory of ‘optimal stopping’) 
which do not provide simple valuation formulae, or alternatively simpler discrete models 
that provide a practical approach to modelling intermediate time stage decisions. Since 
there may be high value in delaying investment and waiting for some uncertainty to be 
resolved, RO models applied to engineering and in particular the long-term nature of 
investment analysis means that discrete models that can model long term uncertainty are 
better suited, especially if long term trend changes can be more clearly incorporated (as in 
scenario-based models). When the problem needs to be modelled as a staged process, 
particularly if several options exist over an investment lifespan, the lifetime is divided into 
discrete number of periods at which milestone decisions can be made.  
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2.3.2. Design flexibility  

With respect to modelling project design flexibility, which as mentioned above has few 
useful parallels in conventional option theory, here the value indeed lies in designing a 
system in a suitably flexible way. Further, as described above, the issues of design and 
strategy are closely interwoven. For instance, one can think of the high value in optimally 
designing a project beforehand by optimising the capacity of a line or transformer to 
reinforce. In this way, by increasing future flexibility, design can also enable a greater set of 
possible strategies. Consider, for example, expansion of one large-capacity line (with no 
future flexibility) as opposed to adding one smaller-capacity line (with the flexibility to 
expand through another one later if needed). In this context, RO analysis essentially takes 
proper account of such possible future economies of scale, together with a proper 
adjustment which recognises that these economies of scale will only be utilised in certain 
favourable scenarios. On the other hand design can also introduce dependency between 
today’s options and future ones, and hence reduce the number of available strategies; for 
instance, when adding one large line makes obsolete the option of adding another small 
line. Clearly, though, increasing the number of design possibilities increases the number of 
available strategies. While this can only increase the RO value calculated by the model, there 
is a resultant increase in the complexity of the RO model which must also be considered and 
in extreme cases an optimisation model could be required on top or the RO model, which is 
either to be embedded within the RO analysis engine or whose results need to be provided 
endogenously to the RO engine.  

2.4. Solving RO problems  

A short overview of solution techniques for RO problems which have been proposed in the 
literature will be given in this Section. While it is out of scope to discuss details, focus will be 
put on the suitability of different approaches for engineering problems and particularly to 
network investment problems as the ones under study, also considering implementation 
complexity issues.  

Starting from the models that have been traditionally used for valuing financial options and 
which have been extended to RO applications in a more or less straightforward fashion, it is 
possible to mention:   

 The Black-Scholes equation; 

 Finite Difference methods; 

 Lattice Methods; 

 Monte-Carlo simulations. 

2.4.1. The Black-Scholes model  

The Black-Scholes formula [Black and Scholes, 1973] is probably the most famous and 
recognised model in option theory. The main pros of its application (and also the reason for 
its success) are the fact that it provides an analytical solution and at the same time it is 
extremely simple to implement, only requiring to input relevant numbers into the equation, 
so to speak. However, several major cons apply, namely: the fact that the decision is made 
only at the time the option expires (that is, the option is of the European type, and cannot 
thus model optimal invest timing); only one uncertainty, or at most two correlated 
uncertainties can be modelled; uncertainty must follow a GBM process with constant mean 
and volatility; and interdependencies between different options cannot be considered. On 
top of these “structural” downsides, one should also mention that due to its simplicity this 
formula has often been abused by its application far beyond the purpose for which it was 
developed.  
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2.4.2. Finite difference methods  

Finite difference methods have been applied to solve RO problems that can be formulated in 
an analytical way as partial differential equations starting from suitable continuous 
stochastic processes. There are several pros in such applications, in primis the fact that Finite 
difference methods can value very complex options in an accurate way and in continuous 
time. However, for practical RO engineering applications it is not always easy to define an 
underlying equation to solve and finite difference methods suffer from the 'curse of 
dimensionality' with respect to the time needed for computation so that, like the 
mathematical  Black-Scholes model, they are limited to one or two uncertainties and may be 
challenged by interdependencies between different options.  

2.4.3. Lattice methods  

Traditional lattice methods  
As already mentioned above, traditional lattice methods [Mun, 2006] were developed with 
the idea to discretise the continuous solution provided by the Black-Scholes formula so that 
intermediate time stages could be accessed and therefore American-type options could be 
valued too. Lattice methods can be fast and simple to implement, particularly for 
spreadsheet applications which may take advantage of dynamic optimization techniques. 
Also, they allow consideration of multiple time periods and investment timing decisions (for 
example when the option is “American”). However, as for the Black-Scholes model, lattice 
methods rely implicitly on the specification of parameters such as volatility and mean (which 
can be an issue for long term investment that may as a result have to be based on specific 
scenario considerations), they become quickly intractable in a spreadsheet implementation 
when the number of uncertainties and time-steps grows.  
 
Extended Lattice Methods: Wang Lattice Methodology  
Extension of lattice methods to non-recombining trees to address engineering applications 
was recently proposed in several works by Wang [Wang and De Neufville, 2004], whose 
formulation thus allows considering interdependencies between options (as the decision 
tree is non-recombining) and also optionality in the project design in order to create greater 
flexibility and then value with respect to timing only. However, again Wang’s model 
considers GBM stochastic processes only (constant volatility and mean), and it becomes 
intractable with increasing number of uncertainties and time-steps (although this is a 
limitation of all lattice based models). In addition, the additional value provided by design 
optionality comes at the cost of complexity, as optimisation techniques need to be put in 
place on top of the RO model, so that the problem is generally cast as a mixed integer non-
linear programming problem whose solution may be not straightforward. 
 
Extended Lattice Methods: Cesena Lattice Methodology 
The model by Wang was improved further by Cesena [Cesena, 2012], with the possibility of 
using any type of process to model uncertainty (including discrete and scenario based ones), 
embedding design options at different levels of the decision tree (while Wang only considers 
them at the pre-screening stage), and adopting any optimisation for determining optimal 
time of investment (based on extended search-like algorithms). However, again this comes 
at the cost of complexity, with the model requiring design optimisation stages and becoming 
potentially intractable the greater the number of uncertainties and time-steps. 
 
Extended Lattice Methods: Extensive Search Methodology  
Extensive search algorithms may be seen as simpler cases of Wang’s and Cesena’s models, 
where there is no optimisation applied at different stages. They can consider 
interdependencies between options (the decision tree is non-recombining) and use any type 
of process, although in most cases scenarios will be given deterministically and attention 
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needs to be paid to the decision nodes that are considered. Given its simplicity, such 
methods could be used to consider relatively simple network investment assessment 
problems. 

2.4.4. Monte Carlo methods  

Monte Carlo simulations: Traditional Methodology 
Since they are based on simulations, Monte Carlo methods are powerful techniques that can 
be used to handle RO problems with multiple uncertainties and with different probability 
distributions and stochastic processes of any type. On the other hand, some "off-the-shelf" 
Monte Carlo methods cannot consider multiple time periods, can only use a single discount 
rate (differently from extended lattice methods, which in this light provide more flexibility to 
model risk, as discussed later), and cannot consider interdependencies between different 
options. However, Monte Carlo approaches are so flexible that there are various way to 
adopt them in a RO context for specific purposes such as to test probabilistically the 
implications of a given strategy under given scenarios. An application in this direction will be 
included within the RO approach proposed in Section 4.  
 
Monte Carlo simulation: Datar-Mathews methodology 
A recent methodology proposed by Datar and Mathews [Datar and Mathews, 2007] extends 
the classical Monte Carlo methods by adopting two discount rates, namely, one for risky 
cash flows and another for safer investment. In this way, by modelling risk in a more 
appropriate way, the model takes further advantage of upside benefits, while minimising 
losses on the downside. However, again in its standard implementation this approach 
cannot consider multiple time periods and interdependencies between different options. 
 
Monte Carlo simulation: Least-squares regression methodology 
The limitations of Monte Carlo methods of not being able to consider multiple time periods 
and therefore model American-type RO have been overcome by the so-called least-squares 
regression methodology, whereby regression algorithms are applied within Monte Carlo 
simulations to access intermediate time decision stages as in lattice methods. However, a 
main drawback of standard Monte Carlo methods not being able to consider 
interdependencies between different options still remains. 

2.4.5. Final consideration on the different RO approaches  

As should be clear by now, engineering RO approaches focus on decision flexibility to make 
potential investment only if it is worthwhile, otherwise, in financial jargon, the option is 
never "exercised”. In this light, all the models discussed above are capable to value options 
that can be exercised at expiry (that is, with a given investment time) while not all models 
are capable to value options with multiple investment stages or to identify the optimal 
investment time. Based on the above discussions, specific problems that can be addressed 
by different techniques (in their standard implementations) are summarised in Table 1.  
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Table 1. Major features of different RO techniques 

  BS FD L W C ES DM MC LSM 

Multi-stage, with strategic decision roadmap   x x x x  x x 

Assess the best time to invest   x x x x  x x 

Consider interdependencies between options    x x x    

Can model more than two uncertainties      x x x x 

Have the flexibility to explicitly use scenarios     x x x   

Do not require design optimisation  x x x   x x x x 

BS: Black-Scholes; FD: Finite Difference; L: Lattice; W: Wang; C: Cesena; ES: Extensive Search; DM: Datar-Mathews, MC Monte 
Carlo; LSM: Least-square Monte Carlo 
 

2.5. Risk analysis and robust optimization  

2.5.1. Need for risk analysis 

While RO analysis is fundamentally associated to weighted averages, particularly when 
coupled to scenarios modelling long term uncertainty, a multi-criteria approach can be 
incorporated into the RO-based decision making framework to take into account risk, which 
in general terms can be defined as the consequences of unexpected events taking into 
account their probability of occurrence. In particular, several criteria (including for instance 
the risk of occurrence of certain “bad” outcomes, cost associated to occurrence of certain 
“bad” outcomes, regret of the selected strategy with respect to the scenario that actually 
materializes, and so forth) may actually be evaluated separately, and then these results can 
be considered side by side in decision making.  

To justify the need for risk analysis, let us consider for instance the everyday example of 
carrying an umbrella: if I carry an umbrella and it does not rain then I regret the minor 
inconvenience of needlessly carrying the umbrella, whereas if I do not carry an umbrella and 
it does rain I regret the major inconvenience of being drenched. The least-regret strategy for 
the umbrella is therefore to always carry an umbrella; however, in reality people tend to 
carry an umbrella only when there is a significant likelihood of rain. A possible interpretation 
of this behaviour is that the probability-weighted decision (i.e., no umbrella) is used when 
the chance of rain is very low, whereas the least-regret decision is employed when the 
chance of rain is significant (even if the chance of rain is much less than 50%). Under this 
interpretation, both criteria (average cost and least-regret) are calculated separately and 
then considered side by side when deciding on the umbrella. 

2.5.2. Various approaches to risk modelling  

While it is outside the scope of this work to provide a comprehensive overview of risk 
modelling techniques, it is possible to give some general considerations for applications to 
RO analysis and particularly to the approach and tool that will be proposed in Section 4.  

 

Deterministic analysis, risk premiums and discount rates 

A classical way to take into account risk in a deterministic environment and in a traditional 
DCF context is to incorporate it into the discount rate factor. In fact, DCF models operate by 
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discounting cash flows to the present considering both the time value of money and the 
uncertainty in the expected future cash flows through a single risk-adjusted discount rate r, 
namely composed of a risk-free interest rate (possibly adjusted for inflation) rf 
(corresponding for instance to the rate of return on Government securities) to take into 
account the time value of money, and a risk premium RP to take into account uncertainty 
and risk: r = rf +RP. Hence, both investment and variable cash flows are typically discounted 
by this same discount rate r, often associated to the WACC. However, in reality the risk 
involved in any given strategy may be multi-faceted and detailed modelling should account 
for this. As an example, consider the risks involved in the following strategies: 

(i) Make a capital investment immediately. The price risk in this case may be negligible, for 
example if the asset is purchased today at a known price.  

(ii) Make a capital investment in 10 years. There is now price risk due to inflation if the 
contract is to be signed at a future date rather than being signed today. The total risk in 
this case (ii) is therefore greater than that in case (i). 

(iii) Employ a relatively new DSR technology now in order to defer capital investment for as 
long as possible and then perform capital investment when DSR becomes exhausted. 
Here, inflation risk applies to future DSR payments similarly to case (ii) above; however, 
as the DSR technology in this case is relatively new, there may also be physical risk that 
average DSR availability may be less than 100% - that is, the average availability level 
that will actually be realised by this new technology is not known at the present time, 
for instance based on the fact that not enough DSR capacity might be available when 
needed or could not be contracted on time (it might additionally be the case that the 
network is stressed without having DSR at full load, for instance due to uncertainty in 
peak load forecast). This average DSR availability level may for example increase over 
time as experience is gained from both a contractual and a control point of view. For 
ease of analysis, and depending on the particular constraints of the DSR solution, this 
physical risk could potentially be modelled in financial terms as a change in the cost of 
1MW of available (rather than contracted) DSR. Whether the physical risk is quantified 
in physical or economic terms, though, it is clear that the total risk in this case (iii) is 
greater than in case (ii). Further discussion is provided in Section 4.  

 

This example makes clear that if we choose to use the quantity RP as a simple means to 
account for risk, then the value of RP should vary depending on the nature of the particular 
strategy under consideration; further, the size of this variation in RP should depend on our 
beliefs about the range of possible futures. Equivalently, the use of a single fixed value of RP 
(equivalently, a single discount rate) across all strategies in the analysis regardless of their 
nature, while having the attraction of simplicity and convenience, can lead to 
oversimplification and hence misrepresentation of Real Options values. It is important to 
note that strategy (iii), which may have the highest risk premium, could nevertheless still be 
the best choice of strategy as it is the only strategy which allows the possibility of completely 
avoiding the capital investment in the case that future demand turns out to be low. 

Among the possibilities to use discounting for risk analysis, as mentioned above there is the 
option to discount differently fixed (for instance on the basis of the WACC) and variable 
costs and benefits (in the case they are uncertain because of DSR). In the case of risky future 
benefits, there might even be the possibility of using a very low and even negative discount 
rate at the extreme (that might change with time to take into account changes in risk, for 
instance in the case of additional DSR required and potentially increasing problems to 
incrementally contract customers). Certainly the choice of the approach to undertake and 
the most appropriate value of discount rate are subject to discussion and needs to be based 
on experts’ assessment. Sensitivity studies (not to be limited to the variable costs discount 
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rate, but for instance also to fixed costs when in the future), for instance through a “tornado 
diagram” (whereby the variations of a given model output, e.g., overall expected cost of a 
project, with respect to certain changes in different input factors are plotted along a vertical 
axis so as to resemble a tornado shape), can provide important insights into the analysis and 
particularly as to what parameters the outcomes are most sensitive to.  

 
Probabilistic analysis and “tail” indicators of risk 
When dealing with uncertainty in a probabilistic fashion (for instance, based on Monte Carlo 
simulations in the presence of a stochastic process, or on the basis of scenario analysis), 
different risk measures can be adopted, which again are mostly coming from finance 
disciplines. Amongst others, besides the classical Variance, which gives an indication on the 
dispersion of a random variable with respect to its mean, the Value at Risk (VaR) and the 
Conditional Value at Risk (CvaR) have been recently proposed. One attraction of VaR and 
CvaR is that they are one-sided, in that they give information about the likelihood or severity 
of unusually high costs, while unusually low costs are not regarded as contributing to 
financial risk. In contrast, less sophisticated measures of variability such as variance are two-
sided so that both unusually low and unusually high costs contribute equally to variance. 

VaR is one of the most well-known and widely used methodologies to assess risk exposure. 
It is intended to mark a boundary between “normal” costs and “extreme” costs and as such 
it specifies a cost threshold. For a user-defined exceeding probability (or confidence) level 
α% (for example 5% or 1%), losses greater than the VaR threshold are judged to be 
sufficiently unlikely that they occur only with probability α%.  

Notwithstanding its popularity, the VaR has been questioned as an appropriate measure of 
risk for two main reasons. Amongst other reasons, there is the fact that since the VaR is 
merely a threshold to separate normal costs from extreme costs, it is not designed to 
indicate the average size of an extreme cost when one occurs. Therefore the CvaR, which 
may be interpreted as the expected size of an extreme cost (measured by the VaR 
threshold), was proposed as an alternative (or companion) risk measure to VaR.  

 
Decision theory models and robust optimization  
An alternative framework to deal with uncertainty and risk preferences particularly in the 
presence of scenarios is decision theory, which is used to enable the decision-maker to 
maintain a significant level of interaction between interventions strategies and risk control 
for different scenarios to be analyzed. In decision theory, different objective functions (to be 
minimized, in the case of costs) and different decision criteria (for instance, minimum 
expected value, minimax weighted regret, mixed optimist-pessimist criterion, and so on) can 
be considered. The results from adopting specific intervention strategies are then expressed 
considering the different scenarios used to model long-term uncertainty and their 
associated probability weights, and the decision maker adopts the relevant decision criterion 
to select the final strategy. Amongst the most used decision criteria, it is possible to mention 
(in the case of cost) the “minimax weighted regret” criterion, where the optimal strategy 
selected across a number of scenarios is the one that minimizes the maximum regret felt by 
the decision maker, after verifying that, given the outcomes obtained (hence, ex post), the 
decisions made ex ante were not the optimal ones. If no weights are applied to the relevant 
scenarios and only the “absolute” maximum regret is considered, this approach basically 
turns into a robust optimization approach in the presence of scenarios, whereby the decision 
maker would hedge themselves against the worst possible outcome of the futures, and the 
selected strategy would be a conservative one. This approach coincides with the “least worst 
regret” approach that National Grid has recently adopted, as discussed in Section 3.  

In addition, when for each scenario a probability distribution of the relevant indicator, say 
the Net Present Cost, is available (for instance because Monte Carlo simulations have been 



P. Mancarella and J. Moriarty, 2013 

14 

 

considered to model small-scale uncertainty, as done in our proposal described in Section 4), 
the criterion may for instance be based on the “expected value” (as the probabilistic metric) 
of the distribution in each scenario, but it may also generally be referred to any α% 
exceeding probabilities of the random variable (similarly to the definition given above for 
the VaR). A comprehensive framework to deal with large-scale uncertainties or over the 
long-term (through decision criteria approaches) and small-scale variability or over the 
short-term (through Monte Carlo simulations) is reported in (Carpaneto et al, 2011a and 
2011b).  

Further considerations on risk modelling and indicators will be discussed in Section 4 with 
respect to the proposed RO modelling framework for DSR valuation. 
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3. Considerations on existing work by National Grid and ENWL 

The purpose of this Section is to provide feedback on work recently carried out in the 
context of decision making under uncertainty and in particular on the Network Development 
Policy (NDP) document [NGET, 2013] by National Grid Electricity Transmission (NGET) and 
the RO spreadsheet “strawman” example developed by ENWL. The final aim is to leverage 
on work already done to identify upsides and downsides of the approaches undertaken so 
far and therefore to provide useful insights into the proposed RO methodology. 

3.1. The Network Development Policy (NDP) from National Grid Electricity 
Transmission (NGET) 

3.1.1. The NGET’s Network Development Policy document 

National Grid Electricity Transmission (NGET) has recently proposed a scenario-based 
approach in its latest Network Development Policy (NDP) document for transmission system 
investment strategy. The approach has been approved by Ofgem as sound in response to the 
investment challenges that a transmission operator faces. More specifically, NGET needs to 
balance the risk of transmission reinforcement early investment (which might result in sunk 
costs and stranded assets if certain generation and demand expectations do not realise) 
against the risk of a late investment, which includes congestion costs. This needs to be done 
considering the possible uncertainty in future demand and generation, and therefore 
National Grid has introduced a number of scenarios that represent a manifold view of 
possible futures as opposed to a single “best” view. In particular, three scenarios (which are 
not forecasts), namely, Slow Progression, Gone Green, and Accelerated Growth, were 
considered in 2011 and 2012, subject to continuous change based on consultations with 
relevant stakeholders. More recently, sensitivities to two key scenarios (Gone Green and 
Slow Progression) which turn out into new scenarios themselves were considered.  

Each scenario is analysed against a number of interventions (always including the “do-
nothing” strategy) that are supported by inputs from external network analysis models and 
that are assessed based on the NPV of the costs of investment, constraints and losses. More 
specifically, network investment requirements are identified based on the most binding 
between thermal, voltage and stability constraints and considering the incumbent security 
criteria. All investment solutions are always of a range wide enough to include both small 
scale and short lead time and large scale and long lead time solutions.  

The investment options are considered over 45 years (this is generally Ofgem’s suggestion 
for network investment studies) of projected data, and include various different 
transmission “strategies”, that is, combinations and timings of transmission solutions, until 
the lowest cost one is found for each and all scenarios. Considering the financial substance 
of investment needed and the volume of the uncertainty involved, risk analysis is critical, 
which manifests itself in the decision on optimal timing for investment. In fact, by waiting, 
new information that could be revealed might confirm or not the need for a certain 
investment, thus increasing its expected value against alternatives and reducing (or 
eliminating at all) the associated risk of stranded assets. On the other hand, considering the 
long lead times for investment, waiting too long could mean increasing congestion cost risk 
in some scenarios. In addition, the optimal strategy can be different for each scenario, that 
is, the possible candidate solutions are competing across scenarios and there thus is a “risk 
of regret” if a strategy is chosen but a different scenario effectively materializes.  

In the light of the above, the conventional CBA approach used by National Grid so far is 
replaced by a new framework that accounts for optimal timing and risk adjustment based on 
decision theory and more specifically on a “least-worst regret” criterion. This rule calculates 
for each scenario the “regret” of adopting a certain strategy with respect to the optimal 
strategy in that scenario, and then selects the optimal strategy as the one minimizing 
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(“least”) the maximum (“worst”) regret across all strategies and scenarios (see Section 4.1.5 
for an illustrative example in the context of our model proposal). In this way, a 
representation of risks and benefits of all possible strategies under the various scenarios is 
pictured and a robust risk-inclusive decision is made from the point of view of minimizing 
possible regrets. As discussed above, this approach can also be seen as a robust optimization 
approach, where the decision maker, who is intrinsically risk-averse, follows a risk-
minimising strategy to decide between competing investment options and the staging of 
investment commitments rather than, for instance, one that would minimise the expected 
cost across the multiple possible scenarios. To confirm the robust optimization nature of 
NGET’s approach, extreme scenarios with high local generation and insufficient network 
capacity and low generation and stranded network capacity are considered too. One of the 
limitations of the approach, as mentioned in the document, is that the new information is 
assumed to be available at a certain point in the future, against which the options are 
assessed in terms of least regret. However, it is likely that information will be available at 
different points in time, so that it would be better if further decision points were available in 
the future when information could be revealed.  

The least regret solution that is identified is also technically checked ex post for robustness 
against the relevant security criteria. If the incumbent security criteria are not met, an 
analysis is carried out as to assess the techno-economic impact of changing the solution to 
comply with regulation, including reliability implications of not meeting the standards. If the 
economic implications of not meeting the security criteria outweigh the least regret cost of 
reinforcement, then a new relevant investment is selected. On the other hand, if the cost of 
reinforcement to meet the security criteria outweighs the economic implications of a 
reliability decrease (which is assessed offline through different analysis), NGET would seek a 
derogation from Ofgem. This option to diverge from the security standards process is 
allowed as from Condition C17 of National Grid’s Licence. It appears that a similar approach 
could be applied to ENWL’s DSR vs network reinforcement problem that is being analysed 
here. In particular, the potential implications of not meeting the P2/6 Engineering 
Recommendations (derogations are already sought today in certain cases) when carrying out 
alternative interventions to expand capacity (and specifically through post-contingency DSR) 
could be analysed as in the CBA models that Ofgem uses for ENWL’s and the whole society’s 
cash flows, so as to make a more informed decision or to carry out a more informed 
discussion with the Regulator. On the other hand, this requires network specific reliability 
analysis and an agreement on the cost of reliability (for instance for customer interruptions 
and customer minutes lost) to be coupled to the techno-economic assessment considered 
here. 

While the analysis aims at producing investment strategies for the entire RIIO-T1 period, 
NGET proposes to review them every year through consultation with the relevant 
stakeholders, so that some investments might be brought forward while others might be 
delayed with respect to the initial plan also in the light of new information available. This 
“rolling decision horizon” would also partly address the concern that the least regret analysis 
would be based with respect to a given point in time in the future when information is 
assumed to be revealed. The benefit of this year-by-year approach to least regret analysis is 
thus that continuous changes in the expected scenarios are always included.  

Related to this, taking account of the staging of different technical options is an intrinsic 
feature of NGET’s strategies under consideration, as it allows decisions to be changed while 
specific work is in progress if different scenarios materialise with time. In particular, since 
the physical build of a new asset usually goes through successive and possibly lengthy stages 
(scoping, optioneering, pre-construction and construction works, etc), these stages are 
explicitly accounted for so that regret-minimising alternatives are assessed at each different 
stage while more information is revealed, thus also minimising the risk of asset stranding. 
Hence, when putting forward a set of technically available options these are not limited to 
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those corresponding to minimum cost designs but also include staged investment.1 For 
example, in the hypothetical case of an intervention subject to high uncertainty where doing 
nothing is the minimum cost solution in one scenario and an expensive reinforcement is the 
optimal solution in a different scenario, an intermediate option might also be considered to 
complete an incremental reinforcement. This would in fact allow completion of the full 
reinforcement if the relevant scenario materializes with time, as well as minimization of the 
regret in the case the do-nothing scenario were to occur. In particular, it may be the case 
that a particular transmission strategy selected in a previous year does not prove to be the 
least regret option any longer identified in the current year. In this situation, a decision as to 
whether to move on or not is made based on a comparison between the cost of cancellation 
and the cost of completion of the solution previously identified, including potential 
intermediate options to slow or delay completion to reduce potential future regret.  

Ofgem support NGET’s least-worst regret approach and the rolling basis of the scenario 
update as “appropriate, sufficiently proactive, prudent and flexible” for inherent risks 
associated with large investments with long lead times. Our view is also that this approach is 
sound as it mimics the behaviour of a decision maker that takes into account the best 
information about potential futures which is available at the time.  

Although the NGET document never explicitly mentions the word “real options”, the 
approach is grounded in the “RO thinking” rationale, particularly in light of the openness to 
considering rethinking of decisions with time in a receding horizon manner. In this sense, 
although the modelling details are not strictly speaking RO, the consideration of new 
information and the flexibility to respond to this brings value relative to traditional studies. 
However, rather than considering the expected value of the possible options in order to 
make decisions and in particular to delay or stage potential investments, as in classical RO 
modelling with a risk-neutral decision maker, NGET adopts a least regret approach that is 
more typical of a risk averse decision maker. 

3.1.2. The Joint Regulator Group document and the “Spackman” approach  

In the NDP, NGET adopts the “Spackman approach”, promoted by the Joint Regulators 
Group (JRG) in its Technical Paper “Discounting for CBAs involving private investment, but 
public benefit” [JRC, 2011], to discount costs and benefits of potential network solutions. 
This model applies to a firm that finances an investment whose benefits mainly accrue to 
consumers or the wider public. More specifically, in the Spackman approach, whose 
adoption from NGET is also supported by Ofgem, all costs (including financing costs based on 
WACC, which is typically estimated by regulators for the specific firm in the respective 
regulated market and which in the specific case is 6.25%) and benefits are discounted at HM 
Treasury’s social time preference rate – STPR (which is effectively given by the HM Treasury 
Green Book and which in the specific case is 3.5%), with the argument that the actual 
underlying systematic risk2 is likely to be negligible. More specifically, the Spackman process 
comprises of two steps: 

1. Convert investment costs into annual costs using the WACC, and add these to the 
annual cash flows3 (an appropriate time profile is needed at this stage, for instance 
assuming a flat annuity). 

                                                 
1
 It is worth mentioning here that in our model proposed below staged investment can readily be carried out by 

explicitly considering different strategies and investment trigger points for sequential investment (as opposed to 
a larger lumped investment, for instance). 
2 Although a controversial term in the regulatory documentation that has been reviewed, “systematic risk” is in 

general meant here as risk that cannot be hedged against through market diversification. In terms of network 

investment business, it can be assumed that most risk is systematic and therefore this can be significant. 
3 There may be specific cases when private financing costs are funded upfront by the public sector and so may not 

have to be added. 
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2. Use the STPR to discount all annual costs and benefits. 

 
This approach originates from the principal–agent model that describes the relationships 
between parties involved in public policy (in this case the Government could be considered 
the principal agent, while other public or private parties are “other” agents). In this 
framework, private investments in projects driven by public policies are risky and as such 
require a risk premium or compensation which can be seen as part of the social cost of the 
project. Therefore, private costs should be priced as other future policy costs (and benefits) 
when calculating the NPV, on top of the risk valuation based on the private sector cost of 
capital. Hence, the approach ensures that the investments financing costs are adequately 
reflected in the CBA according to the relevant risk profile. It is worth pointing out that in the 
RIIO-ED1 CBA templates for DNOs Ofgem applies a similar approach, whereby the WACC is 
used for investment discounting (annuitisation) and then a lower discount rate (of “social” 
discount rate type) is applied to all cost and benefit cash flows including annuitised 
investment. Alternatively, the WACC could be adopted in all costs and benefits. This case is 
also considered as one of the possible alternatives (but not the favoured one) by the Joint 
Regulators Group, particularly when systematic risk (that is in general the most critical and 
challenging component to factor in a CBA) is likely to be significant so that using the STPR, 
which ignores systematic risk, might not be appropriate. It is also interesting to point out 
that none of the regulators adopts an option that at first glance might also appear 
appropriate of discounting some CBA elements at the relevant WACC and others at the 
STPR, depending on their likely systematic risk. As argued in [JRC, 2011] this might be 
because of the complexity of assessing the systematic risk of individual elements of a CBA. 

3.2. ENWL’s Real Options “strawman” spreadsheet example  

We analysed the latest numerical example on RO modelling provided to us, contained in the 
Excel workbook “Numerical options example v4”, also taking into account the general 
information available in the Ofgem CBA templates that were provided before with respect to 
sample cases of C2C intervention valuations.   

The example spreadsheet is quite comprehensive and, as already discussed at the November 
workshop, reflects correctly the general RO thinking that is under analysis in this work, as 
well as the general rationale of the models that will be developed by the University in the 
next year for the C2C project. The example provided covers different potential intervention 
strategies (based on conventional reinforcement, DSR, and a mix of them) over a timescale 
up to 2023, and across five scenarios, including a “most likely” central one. 

While as it will be seen in the next Section there will be differences in the RO model that we 
would like to propose, particularly in terms of modelling of uncertainties and the practical 
spreadsheet implementation, it is possible to say that there are no fundamental divergences 
between the RO thinking that ENWL has had so far and ours.  

There are a number of points that we’d like to highlight in terms of the ENWL spreadsheet, 
mostly in terms of clarifications. 

 Timescale: the worksheet currently covers up to 2023 (which was an arbitrary 
assumption to build up a working example), and it is appropriate to ask until what point 
in the future the model should go. While Ofgem indicates to extend the analysis over 45 
years, we believe that eventually it is challenging to represent the future and therefore 
any planning horizon in a meaningful way beyond around 10-20 years, particularly if 
higher discount rates might be adopted in the future (so that the discounted cash flows 
might count much less than close values). For instance, peak demand forecasts are 
currently to end 2031, i.e., end of RIIO-ED2 (17 years ahead), so this might be considered 
a reasonable timeframe too. On the other hand, if high cost interventions were to be put 
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forward towards the end of the planning horizon without considering the new asset’s 
lifetime after the intervention, this might create biases relative to other “cheaper” 
operational solutions. Although not critical, particularly if relatively long timeframes and 
discount rates are used, one way to get around this is to estimate the salvage costs of all 
the potential assets at the end of the selected time horizon, for which informative 
assumptions about the company’s asset depreciation model need to be put forward by 
technical experts4. However, generally speaking sensitivity analysis should be performed 
through the developed model to check the influence of selection of different investment 
timescales, also considering the shapes and the length of the relevant scenarios available. 
Hence, the tool should be flexible enough to consider variable timeframes. 

 Scenarios: the 5 demand scenarios could obviously be extended to more. However, there 
is always a compromise between number of scenarios (as well as intervention strategies, 
as elaborated further below) and computational burden, also considering the value that 
additional scenarios might bring. In general, it is advised that the scenarios themselves 
come from expert input and considering the in-house expertise and other relevant 
projects from ENWL. Also, there may be consideration for always including “extreme” 
scenarios such as “optimistic” and “pessimistic” (the latter particularly in the case the 
investment decision is to be stress-tested by robust optimization, as explored further 
below). As for the new tool to be developed, it should be flexible enough so as to 
accommodate a variable number of scenarios as selected from the user (up to a 
reasonable upper bound that could be 10 or 15, for instance). The idea of considering a 
central scenario and others with lower probability weight so that the overall occurrence 
sums up to 100% is certainly valuable and in line with our thinking. Also, this does not 
preclude the additional inclusion of a least regret analysis whereby probability weights 
would not be used (in fact, this would correspond to a case of “robust optimization” or 
minimisation of the possible worst case losses, whereby the worst case situation may 
want to be avoided regardless of the probability of occurrence). Scenarios and weights 
should come as inputs from outside the model based on external considerations and 
expert input, and some of them should also consider extreme events and possible 
divergences in the longer term particularly for least regret analysis. Probability weighting 
of scenarios is in line with classical real options approaches and also with the one we will 
propose here. It is also true that it diverges from the least regret approach undertaken by 
National Grid as discussed above, which is fundamentally a robust optimization against 
worst case scenario. Nevertheless, probability weighting could be used also to serve least 
regret analysis, for instance by pointing out that the scenario driving the robust decision 
is extremely unlikely, so that probability weighting of the worst outcomes could be used 
to re-rank the solutions identified according to a pure least regret analysis. 

 Interventions and strategies: a “strategy” is a predefined set of different interventions 
carried out at different tipping points. Strategies should (just as scenarios) come from 
outside and be based on expert input. While certain interventions might be triggered 
(and then the relevant “triggering” times determined) internally to the RO process/tool, it 
is important that an adequate range of possible interventions and strategies are 
incorporated in the model to cope with the different scenarios. For instance, in the 
considered example the two high level intervention strategies are (i) conventional 

                                                 
4 Currently, ENWL depreciate everything to nil, and even if redeploying a refurbished asset the finance treatment 

is at nil value, hence particular attention must be paid to any such assumptions on salvage value. However, as 

mentioned it is likely that discounting in the long term would be such that salvage value assumptions (which have 

been considered here for the principle of carrying out like for like comparison of strategies and in line with the 

levelised cost analysis approach which is a well established technique in engineering economics) might not make a 

big difference in any case. Obviously, these need to be treated according to the incumbent regulatory framework, 

and in this case the investment tool to be developed can be made flexible so as to incorporate salvage value only if 

needed. 
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reinforcement and (ii) a fixed volume of DSR for as long as possible before reinforcing (if 
still required). While these are very sound, there is potential to include other strategies 
to be purposely devised though expert consideration, such as reinforcing even if DSR is 
available, or increasing DSR with time as required. In fact, these further strategies could 
improve the overall decision flexibility and thus give a better view of the possible options 
particularly in terms of staging decisions. Our proposal entails a focus on assessing 
different potential strategies across the available scenarios, so that a proper ex ante 
definition of the potential intervention and strategies is critical, including multiple 
reinforcements and with economy of scale considerations. This highlights the importance 
of defining carefully the “design options” discussed above, which always requires 
external engineering input into the techno-economic assessment. 

 DSR volume, availability, and price: as a working assumption, currently one single block of 
DSR is assumed to be available regardless of the volume actually needed. This could be 
considered as a possible strategy but it is likely not to be optimal, so that other options 
should be considered such as DSR volumes to be contracted changing with the projected 
demand, possibly with a certain predefined margin. Another point to be highlighted is the 
need to identify what is the maximum level of DSR that can be expected to be contracted 
at any time (for instance, 30% of the peak demand), as this will directly impact on the 
physical threshold point for reinforcement. This will likely be network specific and needs 
to come from real customer information. In addition, short term random uncertainty in 
the possibility of contracted demand being unavailable when needed should also be 
considered (it will be in the model we will propose), as it might have implications on the 
DSR margin to contract beforehand. Finally, considerations for DSR contract prices to 
change with time and to be subject to uncertainty should also be added, as it is likely that 
the marginal cost of increasing DSR volumes over different years will be higher once the 
easier customers to contract are saturated. 

 Input data, parameters, and components of the CBA: it is critically important that the 
base set of data that will be used in the study is agreed before the studies are carried out, 
as from our initial calculations the results may be very sensitive to the input data and 
assumptions. For instance, including losses, emissions, and reliability indices in the CBA 
could change substantially the outcome of the decision on the best strategy to adopt. 
Sensitivity studies are in any case highly recommended to test the possible change in 
outcomes as the base data is varied. Even if not directly incorporated in the CBA cash 
flow studies, certain indices should be considered perhaps as risk indicators, such as for 
instance possibility of not meeting the peak demand and so on, since this might have a 
detrimental impact on the future use of DSR as well as on reputation. 

 Small scale uncertainty: uncertainty in input data and smaller scale variations (at a 
“micro-level” with respect to the scenario “macro-level”), currently not included in the 
example, should be discussed and input in the study. We will do this explicitly in our 
proposed model, partly as a model of noise relative to base projections. This might 
include variations in expected peak demand, possible variations in future investment 
costs and DSR contracting costs, and so on. 

 Lead times: this is a relevant issue and should be included in all features of the model, 
also specific flexibility with respect to the investment stages during the lead period itself 
such as abandonment or mothballing. The 3 years and 1 year lead times for 
reinforcement and DSR, respectively, appear appropriate for illustrative purposes but the 
information should be as accurate as possible, particularly for the longer lead times. 

 Reinforcement threshold: this is another key point related to lead times, as potential 
thresholds to be met are to be defined based on projections of demand or forecast. A 
possible idea is to use as the “trigger point” the transition to a certain Load Index (LI) 
band [Ofgem, 2013], representing the asset loading percentage at peak time and in this 
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case the exceeding duration 5  of maximum loading (for instance, the “LI5” band 
corresponds to peak demand exceeding the asset firm capacity for more than 9 hours per 
year). The peak demand “triggering” rule might also be extended to including a second 
aspect relevant to the “slope” of the demand trajectory (observing the trend over the last 
year or few years). It would be preferable to consider the threshold in MVA rather than 
MW. This will likely require specific assumptions to be made on power factors. Further 
considerations are needed in this respect, also depending on ENWL’s current design 
approaches. 

 Consideration on the number of future demand scenarios that a given intervention would 
cover: while the analysis carried out in the spreadsheet is appropriate, the approach that 
we will propose will be different in terms of point of view. In fact, as discussed further 
below, the outcome of the RO model will be a “real-time” indication on the strategy to be 
carried out with a receding horizon. Hence, effectively the decision will be updated 
continuously, year by year. It is also worth mentioning that the RO tool would be such 
that the suggested intervention will always be able to meet the anticipated demand 
acceptably (independently of the long-term scenarios that are considered) as the lead 
time for the proposed optimal intervention is always explicitly taken into account in the 
“spot” investment decision. 

 Discount rates and cost category of interventions: In the example, a pre-WACC value as in 
Ofgem’s CBA template was considered as a working assumption. A more complex rule 
closer to the Spackman approach (for discounting of costs and benefits for assets 
privately financed but with benefits socially accrued) is actually applied in Ofgem’s 
suggested calculations, as mentioned above. This implies that all costs are discounted in 
the same way and somehow belong to the same category. While this seems appropriate 
for the time being, it is likely that: (i) the regulatory position could enforce for instance 
the Spackman approach; and (ii) a different approach to discounting might be taken 
besides the suggested CBA framework and for internal strategic assessment, for instance 
if the discount factor were used as an equivalent risk metric, e.g., to take into account a 
certain risk premium associated to specific interventions (such as DSR) that might be 
considered riskier than conventional ones (such as asset reinforcement), as also 
discussed in Section 4. 

 Identification of optionality from DSR interventions: towards the end of the worksheet, 
an analysis of the optionality that DSR could provide by allowing switching from 
interventions appropriate in higher demand scenarios to those more appropriate in lower 
demand scenarios is considered, so that even if DSR may not the best option in any 
perfect foresight scenario, it could still be the best alternative against uncertain demand. 
While there are appear to be no flaws in the analysis as conducted, it is worth 
highlighting again that in the approach that will be proposed later this aspect is 
automatically taken into account when analyzing individual strategies. In fact, at each 
receding horizon analysis point (every year, for instance), the option value of each 
strategy (and the optimal one in particular) can be calculated as simply the difference in 
values (according to the relevant metric) between that strategy and a business-as-usual 
intervention defined as the baseline. 

4. A novel multi-layer receding horizon approach proposed for RO valuation 
of flexible distribution network investment with DSR  

 

                                                 
5 In order to take into account exceeding capacity duration, assumptions on the peak load profile might be needed 

too. 
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4.1. The multi-layer spreadsheet model  

4.1.1. General tool architecture  

In light of the complexity and detail of the RO challenge faced by ENWL and based on the 
discussions carried out above in this document, we now describe a novel layered approach 
which aims to combine the best available approaches to RO valuation of flexible investment 
strategies as appropriate for this particular application and, in particular, its straightforward 
implementation in an Excel spreadsheet that could be reusable. We highlight the 
methodologies used and their assumptions, strengths, and limitations in order to give an 
understanding of the ways in which the model may be used and also adapted or extended as 
necessary.  

The fundamental idea behind our proposal is to design a RO spreadsheet/workbook tool 
that relies on a multi-layer hierarchical approach to uncertainty modelling and decision 
making. In order to do so, we take the best RO approaches that are suitable for the purposes 
of the analysis and we combine them at the relevant levels, namely, we consider exhaustive 
search for strategy comparison, scenario based analysis for long term uncertainty modelling, 
and Monte Carlo simulations for short term uncertainty modelling.  

The modeling layers correspond to physical locations in an Excel spreadsheet. Each 
worksheet corresponds to a strategy, and there is one additional worksheet (or it could be 
more) containing all input data and outputs. Each worksheet (say, the worksheet for 
Strategy X) contains all scenarios and their combinations, which are then analysed through 
Monte Carlo simulation under the application of Strategy X. More specifically, the following 
modelling layers are conceived: 

1) Layer 1: Strategy layer. There will be as many worksheets as strategies, whereby a 
strategy is a predefined set of interventions that may take place at “tipping points” 
following certain rules related to the demand scenarios in Layer 2. This layer 
corresponds to a worksheet “Strategy X” (with X going from 1 to the number of 
design strategies D that are considered in the study), which contains all scenarios. As 
discussed below, it is important that experts define ex ante the strategies to 
consider in the analysis and their relevant features.  

2) Layer 2: Macro level scenario layer. This layer models long term uncertainties (ie. the 
peak demand trajectory across future years), which as discussed below we consider 
is best modelled using scenarios (as in the current “strawman” example). This layer 
corresponds to each “Scenario Y” of the “macro level” long-term scenarios 
considered in the analysis. All scenarios are modelled within each strategy, so that 
each worksheet “Strategy X” contains each and all scenarios “Scenario Y”, with Y 
from 1 to the number of long-term scenarios S.  

3) Layer 3: Micro level simulation layer. This layer corresponds to micro uncertainties 
and small scale variations occurring within each scenario, and as discussed below we 
suggest modelling these uncertainties based on simulation in a Monte Carlo context. 
In terms of implementation, for each worksheet “Strategy X” and each and all 
scenarios “Scenario Y” within the worksheet, Monte Carlo simulations (with a 
number of simulations N in the order of 1000) are run to create a probability 
distribution corresponding to each “Scenario Y” and “Strategy X”. Then, as discussed 
below, these scenario probability distributions can be opportunely combined across 
scenarios to yield an overall probability distribution for the “Strategy X”, based on 
which suitable summary metrics are calculated, the different strategies (the results 
from the different worksheets) compared, and the best one selected according to 
the preferred criteria. 
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A schematic representation of how the Excel workbook tool might look like is provided in 
Table 2, also including a specific worksheet containing the general controls, input data, 
summary of the results according to different metrics, and optimal control strategy to be 
selected based on the information of the strategy worksheets and relevant criterion. Specific 
details on the models to populate the tool are provided in the sequel. 
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Table 2. Schematics of possible workbook architecture of the proposed RO tool 

Worksheet      
“Strategy 1” 

Worksheet      
“Strategy 2” 

Worksheet     
“Strategy X” 

Worksheet       
“Strategy D” 
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Scenario 
1 

Monte 
Carlo 
simulation 

Scenario 
1 

Monte 
Carlo 
simulation 

Scenario 
1 

Monte 
Carlo 
simulation 

Scenario 
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Monte 
Carlo 
simulation 
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2 2 2 2  

--- --- --- ---  
N N N N  

Scenario 1 summary Scenario 1 summary Scenario 1 summary Scenario 1 summary  
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2 

 
Monte 
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simulation 
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2 

 
Monte 
Carlo 
simulation  
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simulation 
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Monte 
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simulation 
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Scenario 2 summary Scenario 2 summary Scenario 2 summary Scenario 2 summary  
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Monte 
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simulation 
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Y 
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simulation 
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Strategy 2 summary 
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Overall 
summary 

and 
optimal 
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4.1.2. Layer 2: Long-term scenarios analysis for macro factors (demand 
growth) and receding horizon 

For the sake of clarity, layers 2 and 3 will be discussed here before layer 1. 

Regarding layer 2, we propose the selection of a manageable number of scenarios for the 
most important uncertain variable, namely peak demand growth. This approach allows the 
decision maker to clearly and directly specify the model of future uncertainty in demand, the 
most significant driver of network investment strategy, based on expert input rather than on 
arguable stochastic processes. It is recommended that, as far as possible, scenarios are 
chosen in such a way that they are perceived to be equally likely as futures. However, we 
recognise that the likelihood of certain scenarios will be driven by exogenous factors (such 
as future economic and technological developments) outside the decision maker’s control. 
Where any scenario is perceived as being significantly more or less likely than others, we 
therefore recommend that a specific and appropriate probability weight is assigned to that 
scenario, and that the probability weights of all other scenarios be adjusted to account for 
this (this adjustment can be automated in a spreadsheet). As an example, a central scenario 
may be up-weighted and extreme scenarios may be down-weighted, while all other 
scenarios remain equally probable (this was already done in the ENWL’s “strawman” 
example). However, this is not strictly necessary, and any combination of probability weights 
may be used, provided that they sum to 100%. 

Of course, this recommended approach implicitly assumes that the given scenarios are the 
only possible futures. While this may be an acceptable approximation, it should also be 
clearly recognised that these scenarios are all designed to start from the present time and, 
as such, it may not make sense to reuse them in, say, three year’s time when new 
information may have become available. Further, we assume that the scenarios chosen do 
not include any ‘nodes’ or ‘branching points’ at future times, but are single paths. This 
assumption is made for simplicity of modelling as we consider it to be superior to, for 
example, lattice methods, differential equation based methods, and simulation methods in 
terms of being clearly justifiable and understandable: the scenario approach does not 
require any particular assumption to be made about the random dynamics of peak demand 
process over time, which is instead required in all the other abovementioned approaches 
and is, in our view, difficult to justify. Indeed, it would be possible to elaborate within the 
scenario approach by including internal branching points and this could be done, but in our 
view the appropriate choice of scenario weights becomes in that case significantly more 
challenging. 

This recommended scenario approach means that we do not model optimisation decisions 
taken at future times since we have no model for the scenarios that would be considered at 
future times (nor their weights) and hence cannot mathematically model the future decision 
making process. This assumption impacts the type of strategies which may be valued using 
this model: we are limited to considering strategies consisting of a set of interventions, 
which take place at certain trigger points. As a result our analysis aims only to approximate 
the optimal strategy, since the optimal strategy may in general require future optimisation 
decisions which are outside the scope of modelling and implementation in a relatively 
simple spreadsheet tool. However, it is an established principle in control engineering that 
such approximately optimal strategies can perform well in the context of a receding horizon 
approach, whereby only the first step (for example, the first year) of the approximately 
optimal path is carried out before the model is re-evaluated in light of the new state of the 
world and new information. Then, the first step of the re-evaluated strategy is carried out 
(instead of the second step of the original strategy), and so on. The receding horizon 
principle is exemplified in Table 3.  
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Table 3. Schematics of the receding horizon approach 

Strategy number 

Years from today (planning) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

1 *        

2  *       

3   *      

4    *     

5     *    

…         

Strategy Implementation * * * * * …   

 
Clearly the actions which are eventually implemented in this receding horizon approach do 
not necessarily correspond to any strategy (again, described using interventions and tipping 
points) that could be derived today. Indeed, only the first part of the eventually 
implemented actions can be calculated today; the second part will be calculated in one 
year’s time, and so on. Hence this approach, besides being easily implementable and 
understandable, does actually mimic the “on the spot” decision making process that a 
company has to carry out. In addition, the continual process of strategy re-evaluation does 
address the fact that our choice of strategies is limited, as it allows for optimisation to be 
done in later years – this was the major weakness identified in our scenario-based approach, 
and the receding horizon is a good way to make up for it. The difference with respect to 
more sophisticated modelling that would be much harder to implement is simply that this 
optimisation is done in real time rather than being modelled mathematically beforehand. 
Additionally, the continual re-evaluation of strategies means that the question of choosing a 
planning period (or equivalently planning horizon) becomes less significant as the end of the 
planning period is continually moved back one step, thus taking out further uncertainty in 
“modelling the future” and particularly the distant future, provided that adequate residual 
or salvage values can be assigned to those assets which remain usable at the end of the 
planning period. The effective planning horizon for this receding horizon approach is 
therefore infinite, since the receding horizon approach continues indefinitely. We 
recommend sense checking of the set of scenarios and their weights by the decision maker 
each time the model is reused: we understand that this is also ENWL’s view. 
 
A summary of the main considerations relevant to Layer 1 is reported in Table 4.  
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Table 4. Summary critical evaluation of Layer 1 

Layer 1 
Feature 

Advantages Limitations 

Use of 
Scenarios 

Simple, direct, interpretable modeling of 
macro factors (peak load growth) 

Cannot model future scenario analysis, so 
strategies must be sets of interventions defined 
by physical ‘tipping points’ 

Fine detailed modeling of micro factors is 
done within scenarios, then combined 
across scenarios in a weighted or robust 
fashion 

Scenarios and weights should be re-derived by 
an expert on each future reuse of the model 
(this would apply to all reusable models 
though) 

Receding 
horizon 
approach 

Receding horizon approach makes 
particular choice of planning horizon less 
important 

Only approximately optimal strategies are 
derived, to be updated each year (‘receding 
horizon approach’) 

   Strategy 
   analysis 

Allows for least-worst regret analysis Requires one worksheet (containing all macro 
scenarios) per strategy considered 

 
 
In addition to its clarity, the scenario approach makes it possible to include a wide range of 
criteria and metrics for the decision maker. As discussed above, the default RO criterion is 
average cost (or benefit). However, in the scenario approach it is also straightforward to 
calculate and visualize the full distribution of future costs, and not just its average value: this 
makes it possible, for example, to supplement the mean value with financial risk indicators 
for the costs (VaR, CvaR, etc). In this way, scenario analysis provides a simple approach to 
accounting for risk. Additionally, scenario analysis makes possible robust analysis, for 
instance, least-worst regret analysis in which a measure of “regret” is allocated to each 
possible future by subtracting the lowest actual cost under other strategies, as also 
described in Section 4.1.4. This is analogous to the above umbrella-carrying example. In light 
of the above, we recommend that a multi-criteria approach is taken to decision making in 
the RO model for network investment (see Section 4.1.4 for details of our proposal), in 
which several criteria (including average cost, risk measures, and regret) are all evaluated 
separately, and then these results are considered side by side in decision making, as 
mentioned above.  

4.1.3. Layer 3: Short-term Monte Carlo analysis for micro factors (e.g., DSR 
availability and contract cost, peak demand noise) 

Having specified the set of scenarios for demand growth, we now recommend that an 
alternative approach is taken within each given scenario. For the purposes of discussion, we 
therefore now suppose that we have selected just one of the scenarios and we will develop 
it further to account for uncertain variables which are significant at a more “micro” level: we 
will therefore make no further reference to alternative demand growth scenarios within this 
Section. More specifically, within each scenario we may lack “fine” knowledge about the 
real-time performance of DSR, which may be lower than expected either because of an 
insufficient number of contracted customers or because not enough DSR load is online for 
disconnection when needed; similarly, we may lack knowledge over contract price 
expectations from DSR customers, or there can be noise on top of expected peak demand. 

Given the “micro” classification of these uncertain variables, and possibly also given a lack of 
knowledge about their behaviour resulting for example from a lack of comparable historic 
data, we do not recommend the use of probability weighted scenarios for Layer 2 nor of 
methods which rely on specifying random dynamics, such as lattice or differential equation 
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methods. Insofar as there are additional expert insights, there is much scope to implement 
these within the Layer 2 approach. We therefore recommend that these variables are 
modelled straightforwardly by simulation as uncertain physical states which evolve 
randomly through time within the context of Monte Carlo analysis. More specifically, first an 
average level is specified for each uncertain variable (which is analogous to the long-term 
scenarios trajectory of layer 2), and then a distribution is chosen for the randomly 
distributed errors around this average level. This approach may also be interpreted as a 
randomized version of scenario analysis. We may suppose that these uncertain variables are 
independently regenerated each year so that there is no correlation between for instance 
the DSR availabilities in different years, or the DSR payments in different years. At the 
opposite extreme within this Monte Carlo approach, we may model an ‘underlying’ level 
that is unknown today but nevertheless which will be consistent from year to year (for 
example, either 80%, or 90% or 100% of DSR availability; this introduces perfect correlation 
between the availabilities in different years). These two approaches may also be combined 
(i.e., consistent but unknown mean level, plus independent yearly deviations) to create a 
partial correlation between the values of these uncertain variables. 

If the choice of error distribution as described above is held constant over future years then 
this makes the implicit assumption that the patterns of errors are unchanged from year to 
year; an alternative, more detailed approach would be to gradually vary the distributions 
further out in time within the model. As an example, we may wish to model a gradual 
increasing or decreasing trend in DSR costs (this approach was taken in modelling costs of 
distributed generation in [Hoff et al, 1996], or a gradually improving scenario range to reflect 
improved control and implementation of DSR as time proceeds, and so forth. Alternatively 
or additionally, the trend in DSR costs could also be made to track the trend in peak demand 
to reflect contract prices, for instance in the case of increasing volume of DSR needed to 
counteract load growth which would be available at increasing marginal cost (it is expected 
that the more available and marginally “cheaper” customers would be contracted first). On 
the other hand, if the DSR market were to become competitive, contract prices might even 
go down or in general fluctuate over years. This can all be readily modelled subject to expert 
feedback on the assumptions. On the other hand, the simulation approach described for 
layer 3 has the advantages of being less specific than the scenario approach indicated for 
layer 2, and hence less dependent on both expert input and the availability of related 
historical data (although the model parameters can of course be fine-tuned later while more 
evidence of process trajectories may be available).  

A summary of the main considerations relevant to Layer 3 modelling is shown in Table 5.  

 

Table 5. Summary critical evaluation of Layer 3 

Layer 3 
Feature 

Advantages Limitations 

Micro 
variables 

Multiple micro variables considered within 
each macro scenario offering simple, direct, 
interpretable modeling  

Large number (>10^3) of Monte Carlo 
simulations (i.e., rows) needed per 
worksheet – this number increases with the 
number of micro variables 

Monte 
Carlo 
approach 

Each Monte Carlo simulation (or ‘micro 
scenario’) includes modelling of lead times, 
peak load projections, etc., so can be sense 
checked as a (retrospective) CBA  

Monte Carlo results (i.e., after averaging) 
are slightly different every time so 
repeatability should be checked and , if 
necessary, the number of Monte Carlo 
simulations increased accordingly 

Strategy 
analysis 

Full per-scenario cost and physical risk 
distributions obtained for each strategy 

One Excel worksheet per strategy means 
that strategies should be hand picked 



Real Options modelling and tool architecture for flexible network investment  

29 

 

A summary of the main characteristics of layers 2 and 3 is reported in Table 6. Based on this, 
we can proceed with the successive analysis which refers to summarizing results at a 
strategy level. 
 

Table 6. Summary of Layers 2 and 3 

Layer Uncertainty model Variation Expert input Output 

2 

Probability weighted 
scenarios 

Peak load growth 
(pathway) 

- Choice of peak load 
pathways 
- Probability weights 

- Per-strategy weighted 
cost distribution 
- Per-strategy weighted 
risk metrics 
- Least-worst regret 
analysis 

3 

Monte Carlo 
simulations 

- DSR costs 
- Peak load 
adjustments 
(annual volatility) 
- DSR unavailability 

- DSR cost distributions 
- Peak load adjustment and 
DSR unavailability 
distributions 

- Per-scenario cost 
distribution 
- Per-scenario physical risk 
distributions 

 

4.1.4. Layer 1: Strategy modeling  

Each strategy is specified by identifying all of its specifications, an example of which is 
described in Table 7. Specific description requirements need to be tailor made based on 
expert techno-economic input. 

 

Table 7. Example of specifications of a strategy 

Strategy Feature Description 

Peak demand 
projection 

Specification of the method used to project an expected peak demand level at 
various horizons from today (e.g., 1 year for DSR contracts, 3 years for 

reinforcement); may e.g. be taken from the peak demand change scenarios but could 
in principle be different  

List of states and 
lead times 

Takes account of lead times, e.g., reinforcement states may be coded as 3/2/1/0, 
respectively denoting the number of years until reinforcement will be complete. 

DSR state may e.g. record the total size of DSR contracts being renewed/negotiated 
for the coming year 

     State transition          
     rule 

For each possible state above, a decision rule is specified for progression to the next 
state (e.g., reinforcement state 2 automatically moves to state 1 as the reinforcement 
work nears completion; or reinforcement work starts when 3-year projected demand 

exceeds total capacity net of DSR) 

     Costs/benefits 

Full list of all costs and benefits (e.g., investment cost, DSR cost, salvage values, 
compensation costs), possibly depending on the current states, sufficient to carry out 

a retrospective CBA in each micro scenario 

     Discount rate 

As suggested in Section 2.5.2, different discount rates or risk premia might apply to 
different strategies (or to specific costs/benefits within a strategy). However, the 
scenarios in Layer 2 and the detailed simulation present in Layer 3 is sufficient to 

account for risk and we do not recommend using the “crude” technique of modifying 
the discount rate; instead, for clarity and interpretability it is recommended that a 

single discount rate be kept within each workbook 
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Since strategies typically involve tipping points which need to be foreseen years in advance 
due to the significant lead times potentially required for capital investment, this requires 
specifying the basis on which demand projections are made. Clearly an exhaustive list of all 
possible strategies would be extremely lengthy, and we recommend creating one Excel 
worksheet per strategy, so an expert should be involved in identifying a manageable number 
of candidate best strategies for examination by the model. As an example, we may consider 
a strategy which aims to perform DSR for as long as possible then reinforce if necessary. In 
this case, a precise meaning must be given to ‘as long as possible’ – for example, the tipping 
point may be “when projected peak demand in three years is greater than 0.9 times current 
capacity”, so as to leave a security margin, if wished. As a consequence we must also give a 
precise meaning to “projected demand” – for example, “demand is projected by assuming 
that the demand growth seen in the current year continues unchanged over the next three 
years”. A sensitivity analysis is of course possible whereby the demand projection method is 
varied in order to find the best balance between caution and expected cost: this analysis 
would be performed by varying only the demand projection method, and considering each 
variation to be a different strategy, then comparing.  

With our chosen set of strategies precisely defined, for each strategy (corresponding to a 
worksheet) we may now consider a single macro scenario from Layer 2. The sequence of 
decisions taken by rational management over any set of micro variations around this macro 
scenario can then be calculated by applying the strategy, and the cost distribution of this 
strategy within this macro scenario may be calculated by Monte Carlo analysis in which a 
large number of micro-scenarios are simulated, and a retrospective CBA performed on each 
one to arrive at its net present cost. The empirical distribution of this set of simulated NPCs 
may be summarised in the form of a histogram, for this macro scenario, with appropriately 
sized bin widths. In this way we obtain one histogram per macro scenario, which may be 
combined as explained in the next paragraph. Before combining, however, we note that 
some additional metrics may be calculated at this stage. Firstly the average cost of this 
strategy in this macro scenario, minus the cost of the cheapest strategy in this macro 
scenario, may be used as a measure of ‘regret' as discussed above; secondly, averages may 
also be taken of any physical stress indicators – e.g., the proportion of micro scenarios in 
which peak demand was not met. 

We now repeat this process for the same strategy (the same worksheet) for all scenarios (all 
coded within the same strategy worksheet) and we create relevant distributions and 
histograms for each of them. It may be shown (using the Law of Total Probability) that these 
per-macro scenario distributions for this strategy may now be combined in a mathematically 
consistent way. Assuming that consistent bin widths have been used across the macro 
scenarios for the same strategy, taking weighted averages of the bin heights in the obvious 
way (using the macro scenario probability weights) then finally yields the estimated overall 
cost distribution for this strategy, across all scenarios. From this overall cost distribution, the 
overall average cost and financial risk metrics may be calculated (VaR, CVaR, etc.). Overall 
physical risk associated to this strategy may also be evaluated by taking the probability 
weighted average of any physical stress indicators calculated as described in the above 
paragraph. Finally, the worst regret for this strategy may be evaluated by simply identifying 
the scenario with the highest regret; it may be informative to also highlight how likely is the 
macro scenario which leads to the highest regret (and as mentioned earlier, potentially the 
corresponding probability weight can be applied too, so that the “least worst regret” 
criterion turns into the “minimax weighted regret” one). 
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4.1.5. Exhaustive search and optimal strategy identification based on the 
relevant metrics and decision models 

Finally, having now calculated all of the desired metrics for one of our given strategies 
“Strategy X”, the same process is repeated for all strategies under consideration (all the 
worksheets). In this way all metrics (from average cost to risk-based measures) are in place 
for a full multi-criterion analysis of the set of candidate strategies and the final selection may 
be made by exhaustive search across all strategies (all worksheets) according to the relevant 
criterion selected. 

In order to exemplify the overall procedure for optimal strategy selection through the 
proposed multi-layer tool, let us take for example the worksheet “Strategy 2” (Layer 1), 
evaluated across three macro scenarios “A”, “B”, and “C”, with characteristics as in Table 8. 

 

Table 8. Characteristics of Strategy 2 in the example case 

Macro scenario  A B C 

Cost £M (ignoring micro uncertainty)  7 6 5 

Micro uncertainties  Low Med High 

 

The indications on micro uncertainties in Table 8 are visually reflected by the cost probability 
distribution functions (PDFs) from Monte Carlo simulations (Layer 3) as from Figure 1, where 
the variance of the data with respect to the expected values increases moving from Scenario 
A to Scenario C (Layer 2). 
 

 

Figure 1. Monte Carlo based PDFs for the three example scenarios in Strategy 2  

 

The macro scenario weights are then used to merge these PDFs for overall risk analysis and 
comparison against other strategies (Figure 2) in Layer 1, with Expected Cost and VaR values 
also indicated in Table 9. 

 

 
Figure 2. Monte Carlo summary for Strategy 2, Layer 1  
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Table 9. Summary of the metrics for strategy comparison in Layer 1  

Strategy  1 2 3 ... 

Expected Cost £M  ... 6.3 ... ... 

Value at 5% Risk £M  ... 6.9 ... ... 

 
Different strategies can then be compared with each other based on their Expected Cost or 
other (risk) metric, in the specific case the VaR, as exemplified in Figure 3 for hypothetical 
Strategy 1 and Strategy 2.  
 

 
Figure 3. Visual comparison between Strategy 1 and Strategy 2  

 
It is interesting to notice how Strategy 1 is characterized by lower expected cost but higher 
variance, while Strategy 2 has higher expected cost but lower variance. However, both PDFs 
are relatively symmetric and have approximately equal VaR. Hence, not much information 
could be drawn in terms of risk management from the VaR indicator, and in case the 
variance should be used as risk metric. Therefore, a risk-neutral decision maker might decide 
to focus on expected cost and therefore go for Strategy 1, while a risk-averse decision maker 
might opt for Strategy 2, if the variance was the risk metric. On the other hand, in the 
generic PDF shape examples shown in Figure 4, the skewed distributions (which one could 
imagine corresponding to as many strategies to be assessed in Layer 1) have approximately 
the same variance, but significantly different VaR values, so that the opposite situation 
might arise.  
These simple examples thus illustrate the rationale behind our proposal of adopting multiple 
metrics and risk indicators when comparing different strategies, given the variability of PDF 
shapes that could arise from different strategies. Also, these examples illustrate the benefit 
of adopting a multi-layer approach with differentiation between macro (scenario-based, 
Layer 2) and micro (Monte Carlo-based, Layer 3) uncertainties which are then combined at 
the Layer 1 level to give a picture of the full distribution of costs, so that specific details in 
the interpretation of the risk metrics for each strategy can be explicitly checked.  
 

 
Figure 4. Visual comparison between example PDFs with different shapes  
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However, as mentioned a few times alternative approaches to decision making could be 
carried out, for instance based on minimizing the worst regret, as in National Grid’s 
approach. More specifically, putting it in the context of our model this rule would  

 Calculate for each Scenario S the “regret” experienced from each Strategy X: 

Regret(X,S) = (Cost of Strategy X under Scenario S) minus  

(cost of Optimum Strategy for Scenario S) 

 Calculate for each Strategy X the “worst regret” that could possibly be experienced 
across all possible Scenarios S: 

WorstRegret(X) = maximum{Regret(X,S)}  

 Select the investment Strategy X* whose worst regret is the smallest (the “least worst 
regret”) 

Strategy X* -> min WorstRegret(X) 

 

In the following illustrative example, starting from the cost of each strategy and each 
scenario (Table 10), it is possible to build the Regret matrix of Table 11, whereby the regrets 
in each scenario are calculated with respect to the best strategy (minimum cost) in that 
scenario. For instance, in Scenario A the regret for Strategy 1 is equal to 2 (difference 
between the cost in Strategy 1 and the cost in Strategy 2, which is the best strategy in 
Scenario A), the regret for Strategy B is zero since Strategy B is the best strategy for that 
scenario, and so forth. Therefore, the worst possible regret for each strategy across all 
scenarios occurs under Strategy 3, so that Strategy 3 is favourable according to “least worst 
regret” analysis. As mentioned earlier, other versions of this decision approach could also 
consider the relative weights of the different scenarios when building the relevant decision 
matrices (see for instance [Carpaneto et al, 2011b]). 

 

Table 10. Strategy/Scenario cost matrix  

 Cost Scenario A Scenario B Scenario C 

 Strategy 1 4 4 12 

Strategy 2 2 3 8 

Strategy 3 3 2 1 

Strategy 4 3 4 12 

Best strategy in 
scenario  
(and its cost) 

2 (2) 3 (2) 3 (1) 

 

Table 11. Regret matrix  

 Regret Scenario A Scenario B Scenario C Worst regret 

 Strategy 1 2  2 11 11 

Strategy 2 0 1 7 7 

Strategy 3 1 0 0 1 

Strategy 4 1 2 11 11 
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4.1.6. Considerations on computational time  

Computational time will of course be influenced by the number of scenarios considered in 
Layer 2, the number of micro variables considered in Layer 3, and the number of metrics 
used in the analysis. However, the greatest effect on computation time is expected to come 
from the Monte Carlo step. To test this, we ran a simple example Monte Carlo simulation in 
Excel. On a standard desktop computer (2.5 GHz, 4GB RAM) it took: 

- <1 second to run 1,000 Monte Carlo simulations and the results were consistent and 
repeatable within a 3% tolerance; 

- 25 seconds to run 10,000 Monte Carlo simulations and the results were consistent and 
repeatable within 1% tolerance. 

Our proposal is based on the use of approximately 1,000 Monte Carlo simulations per 
worksheet, within which all scenarios are examined as discussed above. Given that the 
purpose of this tool is to provide a broad comparison of a number of strategies across a 
number of scenarios under a number of metrics, the example tolerance level we observed 
above with 1,000 simulations seems acceptable for an Excel tool for use on a standard 
computer. Repeatability can easily be checked by simply refreshing the spreadsheet, and we 
of course recommend that marginal results from any modelling exercise should always be 
investigated further in any case. We would also like to point out that we expect (although 
we have not tested this) that, if deemed necessary, the Monte Carlo process might be sped 
up by “coding” the simulations for instance in a VBA macro rather than using the standard 
Excel functions, albeit with a corresponding increase in the complexity. 

4.2. Risk modelling: financial and physical risk measures  

As widely discussed above, risk can be accounted for in different ways in our proposed tool, 
for instance by using different and appropriate discount rates for different interventions and 
over time, or by considering various “tail” measures at the level of scenario cost 
distributions and overall strategy cost distributions, such as for instance VaR and CVaR. The 
decision maker would therefore typically have at disposal a full set of information to 
undertake the best strategy, for instance based on average cost only (risk-neutral decision 
maker), by considering only the relevant risk measures (risk-averse decision maker), or by 
applying a mix of decision criteria (see also Section 4.1.5). For instance, a risk-averse decision 
maker could decide to go for a strategy for which the selected CVaR or the worst regret is 
minimum. A risk-neutral decision maker could go for a “classical” approach and pick the 
strategy that would minimise the average cost. Considering both at the same time would 
represent a multi-criteria approach, which could be reconducted to a single criteria 
approach for instance by deciding to weigh (in a way to define ex ante) the expected cost 
and the relevant risk measure so that an intermediate level of risk aversion could be 
achieved.  

Other risk measures, physical rather than financial, could also be considered, for instance to 
take into account that different interventions provide different amounts of capacity, and 
DSR could potentially be less reliably available than a new asset (this has already been 
incorporated in our proposal through layer 3 short term uncertainty modelling). In 
particular, for instance a “flag” could be put any time (any Monte Carlo simulation run) that 
peak load might potentially not be met according to our layer 3 modelling in a given scenario 
and a given strategy. Then, exactly as for the financial indicators, probability distributions at 
the scenario level (layer 2) and the strategy level (layer 1) could be built, so as to identify and 
quantify under which conditions (scenarios) a given strategy might bring technical risk of not 
meeting the load or exceeding the asset limits.  

Technical risk metrics might be represented for instance by Load Indices (LIs) [Ofgem, 2013], 
basically representing demand versus capacity and decreasing (in a scale of 1-5, from low to 
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high) if demand falls or if capacity is increased. LIs could be easily incorporated in our 
simulation model and a probabilistic representation of risk through this measure could be 
readily provided. As suggested by Dr Shaw in one of our private communications, even if 
currently DNOs do not get a direct financial benefit from improving LIs, there exists a 
regulatory commitment that this measure should not exceed certain threshold measured in 
terms of overall number of LIs per year or overall weighted LI score. Hence, if incorporated 
in our simulations, our approach could truly be multi-criteria in the sense that it could 
provide a probabilistic representation of both financial and reliability performance of a given 
strategy, with also detailed breakdown by scenario so as to identify specific drivers for risk 
and potential interventions. Such LI risk measures (or similar measures such as Health 
Indices, HIs, which could significantly change following a capacity intervention) would also 
provide strategic indication on the performance of an asset portfolio, and in case it could be 
decided to include them or not into the analysis (thus changing the degree of risk aversion, 
as in the umbrella carrying example) depending on the available “headroom” available 
before being at risk.  

Various sources of technical risk might also be taken into account, for instance based on ICT 
failures in operating NOP or DSR, which could either coded within our short-term 
uncertainty model or could come externally from reliability simulations specifically designed 
and run so as to be consistent with our RO approach (this latter case obviously require 
inputs and work outside the RO tool only, particularly if realistic assessment of expected 
energy not supplied were needed).  

Financial value could then be assigned to technical risk metrics too, either because enforced 
by Regulation through penalties, or because set internally by the DNO, for instance to 
represent overall costs related to factors such as interruption or reputation costs in the 
event that capacity were insufficient to meet demand. In this way, we would fall back into 
purely financial, but risk inclusive, single objective optimization.  

4.3. DSR “pricing”   

Our model proposed and described above may also be used to examine the question of the 
correct price to pay for the option to get DSR at a future date. Since the model of DSR price 
is one of the features that must be specified for each strategy (see Table 7 above), it is an 
input to our modeling. In our simulation-based approach, the DSR contract structure could 
readily include separate payments for availability and utilization by including sufficient detail 
in the list of costs and benefits included in the strategy. Note that the DSR price may be 
specified to be stochastic, in which case it is the mean level (or trend) that is specified, 
together with a distribution for the deviations from this price. A set of new strategies may 
then be constructed, differing only in the model of DSR prices, and these new strategies 
compared in the normal way (taking into account their average cost, least-worst regret, etc). 
In this way, again by exhaustive search by running various sensitivities on the DSR price, an 
optimal price level could be reached according to the specific criterion considered. It could 
also be that different strategies (for instance, adopting DSR till a certain capacity threshold is 
met by load growth as opposed to immediate asset reinforcement) might become optimal 
under different DSR payments, which again could be identified through sensitivity studies 
(this aspect might be particularly relevant since, based on a number of test performed 
within the C2C project, optimal strategies may be quite sensitive to DSR contract prices). The 
approach undertaken in this way to DSR pricing is also multi-criterion, making it consistent 
with the overall approach to optimal strategy selection. 
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5. Concluding remarks  

 

5.1. Summary of the work  

In this report we have provided a comprehensive overview of the state of the art of Real 
Options analysis and risk assessment, with focus on applications to flexible network 
investment under uncertainty and with insights on the issues and opportunities that 
inclusion of DSR might bring. We have also reviewed current approaches that have been 
undertaken for decision making under uncertainty by National Grid in their Network 
Development Policy document and by ENWL in their “strawman” RO spreadsheet example. 
Finally, based on our expertise, experience and studies carried out during this work, and our 
understanding of ENWL’s requirements as to a RO tool to be developed in Excel, we have 
proposed a novel methodology for RO assessment of network investment including DSR and 
described relevant worksheet architecture. This point is expanded on below. 

5.2. Proposed RO model and tool architecture  

We have proposed a novel multi-layer receding horizon approach, exemplified in a 
hierarchical spreadsheet implementation, to RO analysis of flexible network investment 
under uncertainty with specific inclusion of DSR.  

The model is organised in terms of strategy (layer 1), long-term scenarios (layer 2) and short-
term Monte Carlo simulations (layer 3), thus bringing together and deploying the optimal 
features of different RO approaches as fit for the purpose of this work.  

The proposed tool can be flexibly adapted to take decisions on a regular basis (for instance, 
every year), and the underlying model features the upsides of the receding horizon 
approach successively deployed in the engineering applications of optimal control theory 
and also makes up at the same time for some limitations that implementation in a relatively 
simple tool brings.  

Different metrics and decision criteria have been discussed and can be implemented in the 
tool, based on probabilistic representation of relevant random variables and allowing 
specific consideration for financial and physical risk analysis and hedging of different 
strategies to be considered. 

Useful outputs of the proposed tool may include: 

 Optimal investment strategy for the current year (decision time), to be reassessed with 
receding horizon every year in the light of the projected scenarios and estimated 
uncertainty. 

 Ranking of the considered decision strategies based on the input intervention 
alternatives (the “design-and-time options”) as from different criteria (expected value, 
expected value weighted with risk metrics, least worst regret, weighted least regret, VaR, 
CVaR). 

 Detailed breakdown of the probabilistic distribution of costs of each strategy in each 
scenario, so that fully informed and transparent decisions can be made.  

 

The tool can be applied in various ways besides determining optimal investment strategies, 
amongst the other to run sensitivity studies to assess optimal DSR price level, to quantify 
financial and technical risks associated to specific interventions and suitability of an asset 
portfolio to meet relevant requirements, to value the impact of inclusion of external costs 
(for instance, from losses, emissions, reliability metrics, etc.) into CBA, and so forth. 
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5.3. Potential future work  

Following relevant feedback from ENWL and upon agreement with them, we envisage to 
further improve this work in order to publish it as an academic publication. We also believe 
that our teams at the University would be in an ideal position for the practical 
implementation of the tool we proposed here, if ENWL decide to follow our suggestion.  
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