CLASS webinar 26 March 2015

U.

CLASS webinar

26 March 2015 Simon Brooke Electricity North West

Agenda

Webinar format

Bringing energy to your door

Submit written questions on line during the webinar to be posted on our website

or

Press 01 on your telephone key pad to take part in the live Q&A at the end of the presentation

Our innovation strategy

Celectricity

Our smart grid development

Bringing energy to your door

Leading work on developing smart solutions

Customer choice

EXAMPLE A Four flagship products (second tier) £36 million

Customer Load Active System Services

Bringing energy to your door

CLASS is seeking to demonstrate that electricity demand can be managed by controlling voltage...without any discernible impacts on customers

Key activities to date

Jan 2013

Bringing energy to your door

March 2015

Knowledge sharing and dissemination

The ICCP link

Dave Wagstaff

nationalgrid

Bringing energy to your door

Setting the scene

Bringing energy to your door

Improved visibility for the SO

Improved visibility for the DNO

What is an ICCP link?

Bringing energy to your door

Secure Inter Control Centre Protocol is the industry standard

Direct fibre optic connection

Enables data exchange between energy management systems

Key learning points

Relectricity

Key learning points

Celectricity

Bringing energy to your door

Potential for secure links to be used for control instructions between the SO and DNO

Design can be replicated across all DNOs

Potential changes to industry codes to ensure CLASS is implemented in a standard technical way

Next steps

Bringing energy to your door

Both sides need to evaluate the long term benefits

Learning from CLASS project can be used to meet future challenges eg future DSO / embedded and generation mix challenges

Real time data sharing has placed ENW and the SO ahead of the anticipated EU Network code for operational security

CLASS live events

Paul Turner Delivery Manager

CLASS system overview

System frequency event

Bringing energy to your door

CLASS

Primary frequency response enabled

nationalgrid

System frequency event

One of a pair of primary transformer circuit breakers opened at the enabled CLASS sites when system frequency dropped below operational limits (but stayed within statutory limits)

This resulted in a reduction in demand and voltage at these primary substations within two seconds of the National Grid frequency event

X

憲

17 September – 20:44 frequency event

Fallowfield

Fallowfield: Voltage

Fallowfield : Active demand

Fallowfield conclusions

Bringing energy to your door

A transformer tripping action was triggered at 20:44

A voltage reduction of 1.44% of Vnominal was achieved

An active power reduction of 0.18 MW out of 8.78 MW was experienced (2.05%)

A reactive power reduction of 0.22 MVAr out of 1.58 MVAr was experienced (13.9%)

After the tripping normal voltage variation due to OLTC and consequence power variation are evident

Voltage and power variations

Wednesday 17 September 2014 at 20:44					
Primary	ΔV [%]	∆P[%]	∆ Q[%]		
Fallowfield	1.44	2.05	13.9		
Hyndburn	1	-	-		
Golborne	3	-	-		
Baguley	1.57	2.67	12.2		

Monday 15 December 2014 at 22:43					
Primary	∆V [%]	∆P[%]	∆ Q[%]		
Fallowfield	1	1.78	7.14		
Hyndburn	0.88	0.84	7.7		
Golborne	2	1.61	11.76		
Baguley	1.7	1.9	10.6		

Conclusions

Bringing energy to your door

Voltage/demand reduction

A voltage reduction between 0.88 and 3% and a demand reduction between 0.84 and 2.67% has been achieved by transformer tripping

Challenge

One of the main difficulties in estimating a robust impact demand impact due to the tripping is the fact that after a few seconds/minute quite often other OLTC actions are triggered

Voltage v demand

More than a linear relationship has been noticed between voltage and demand

Next steps

X

審

黄

Bringing energy to your door

Sep 2015

March 2014

Trials and customer surveys	Data collection and analysis	Report publicatio	on Closedown event
Complete trials and customer surveys to assess perception and impact	Final analysis of technical data and customer survey outcomes	Write-up and publish trial outcomes	Final dissemination event for all stakeholders

Knowledge sharing and dissemination

QUESTIONS

ANSWERS

CLASS webinar

Please complete our online poll

