CLASS workshop

Thursday 9 July 2015

Introduction

Steve Cox

Introducing Electricity North West

Bringing energy to your door

£12 billion of network assets

56 000 km of network ● 96 bulk supply substations 363 primary substations ● 33 000 transformers

Our innovation strategy

Celectricity

Our smart grid development

Bringing energy to your door

Leading work on developing smart solutions

Customer choice

EXAMPLE A Four flagship products (second tier) £36 million

CLASS

Bringing energy to your door

66

Is seeking to demonstrate that electricity demand can be managed by controlling voltage...

...without any discernible impacts on customers

Customer Load Active Systems Services

Back to school for a moment...

Bringing energy to your door

This fundamental relationship is at the heart of CLASS

But how will it change over time as customers adopt new devices?

How could we use this relationship in a smart way to benefit customers? *Voltage is proportional to demand*

If Voltage is increased demand increases

And vice versa . . . !

What problems could we solve ?

CLASS aims to harness thousands of tiny changes at just the right time

Our structure and partners

Bringing energy to your door

Learning and dissemination

If rolled out GB-wide, CLASS has potential to defer reinforcement costs

Rapidly deployable solution	Reinforcement deferral	Provides time for assessment	Cost deferral	Carbon reduction
			£	
Will better exploit existing assets, thus cost-effective and quickly implemented	Reducing peak demand at a primary can delay the need for reinforcement	Provides DNOs with valuable time to conduct analyses and assess how best to intervene	Can defer reinforcement costs and the time taken to complete the associated works	Minimises carbon- intensive infrastructure

Structure and technical overview Steve Stott

CLASS system overview

Complete CLASS system

Bringing energy to your door

Control room Substation Algorithm oltage Control Myars T11 Tap /Current T12 Tap /Current Group 1 T11/T12 Primary 0.4 Soap TΧ ASC Fratied Circuit **AVC** \leftrightarrow (Transformers) **Breaker** PoF NMS Dashboard Primary **ICCP** Link ENW Voltage Control Data Transfer Stage 1: +) Stage 2: +) Stage 3: +) Primary CRMS NG NMS Dashboard **RTU Monitors** NMS 0.0 # HV & LV 1.0.1 iHost Envoy monitors

15

What is an ICCP link?

Bringing energy to your door

Secure Inter Control Centre Protocol is the industry standard

Direct fibre optic connection

Enables data exchange between energy management systems

CLASS substation overview

What does the ASC do?

Bringing energy to your door

CLASS functions

Voltage management Demand boost function (DBF) Demand reduction function (DRF) Automatic demand reduction function (ADRF)

Frequency management

Manual primary frequency response (MPFR) Automatic primary frequency response (APFR) Automatic secondary frequency response (ASFR)

> Reactive power management Tap stagger function (TSF)

CLASS – Argus 8 AVC interface

Bringing energy to your door

Argus 8 – standard product + custom made stepped VT SIEMENS ISVT/T11 <u>92</u>0 E + 6% + 4.5% 110V + 3% + 1.5% 0% - 1.5% T11 AVC T12 AVC - 3% 0V - 6% OV 200VA

Demonstration

Lunch

Electricity Bringing energy to your door

U.

U.

CLASS Customer Engagement

Kate Quigley/Impact Research

CLASS project overview

賽

Objectives	Reduction of peak demand	Frequency response and voltage support	Voltage and demand relationship	No effect on customers			
What?	 Baseline measure: Spring 2014 Monitoring waves: Summer 2014 to Spring 2015 696 customers recruited at baseline 1,357 monitoring interviews to measure changes to power quality 						
Customer hypothesis	"CLASS will b Customers will supply quality y	e indiscernible not see / observ when these inno	e to customers" ve / notice an im vative technique	pact on their as are applied			

Summary of the Trial surveys

Bringing energy to your door

Monitoring Trial surveys

Trial 2: 3%, 5% Trial 3a: Stage 1 Auto Enable Trial 3: Stage 2 type 2

Interviews spilt between test and control

Questionnaire

Administered over the phone 5

minutes

Had customer noticed any discernable differences in the quality of their supply?

£25 reward per interview

Test and control methodology

Bringing energy to your door

Any 'placebo effect' from being told that a trial may take place was accounted for by notifying half of the control group and half of the test group before any test or dummy test took place on selected electricity circuits

What have customers noticed?

Celectricity

Bringing energy to your door

No differences by customer type, trial type, region, vulnerable customers, survey season

No complaints from customers about power quality that could be attributed to CLASS Customers did *not* notice the CLASS tests

The hypothesis has been proven

Changes to appliances or lighting

Bringing energy to your door

Customers who said they noticed a change in performance to at least one appliance or to their lighting in the last 7 days was significantly lower than the baseline

The test sample were **less likely** to have noticed a change in performance than the control sample

Trial type

X

Bringing energy to your door

Type of test was not an influencing factor on likelihood to notice a change to power quality

Customer type

Bringing energy to your door

Even **vulnerable** customers who may be more dependent on a constant electricity supply than other customers were no more likely to notice changes than other groups

Changes that could be due to CLASS

Bringing energy to your door

Changes to power quality that **could be due to CLASS** were less than 3% on average

Customer satisfaction with service

Bringing energy to your door

Good news \rightarrow Overall satisfaction improved since the baseline, and also improved amongst those who noticed a change to their power quality

Bringing energy to your door

Complaints about power quality or service received at the customer contact centre or to Impact Research team likely to be caused by CLASS trials

CLASS trial results overview

Kieran Bailey

憲

CLASS Trials								
Trial/ Description	Load modelling	Peak demand reduction	Stage 1 frequency response (49.7Hz)	Stage 2 frequency response (49.8Hz)	Reactive power absorption			
Objective	Establish voltage demand relationship	Demand response for peak reduction	Response to r when freq	Reduce high volts on transmission network				
Technique	Raise and lower tap position	Lower tap position	Switch out Lower tap transformer position		Stagger tap position			
Trial period	Across entire annual cycle	Peak demand	Any time		Low load			

Load model development

Celectricity

Bringing energy to your door

Static load model found to be the most appropriate load model for CLASS

Static exponential load model is chosen for load modelling at all substations due to its simplicity and clear coherence in defining demand-voltage matrix. The Kp and Kq represent the voltage exponents of real and reactive power for a static exponential load model

$$P = P_o \left(\frac{V}{V_o}\right)^{k_p}$$

 $Q = Q_o \left(\frac{V}{V_o}\right)^{k_q}$

Voltage/demand relationship

Bringing energy to your door

electricity

Four seasonal, average week day and weekend, voltage/demand relationship matrix for every half hour interval for 3 load types

Seasonal average for Romiley

X

Average seasonal voltage/demand relationship

Кр	Maiı	Mainly domestic			Mainly Industrial/commercial			Mixed		
values	Min	Max	Av	Min	Мах	Av	Min	Мах	Av	
Winter	1.64	1.04	1.24	1.73	0.89	1.26	1.31	0.81	1.01	
Spring	1.54	1.09	1.29	1.40	0.81	1.18	1.74	0.84	1.10	
Summer	1.58	1.01	1.33	1.87	0.97	1.33	1.27	0.18	0.83	
Autumn	1.61	1.17	1.36	1.66	1.01	1.23	1.22	0.86	0.99	

Kq	Mainly domestic			Indust	Mainly Industrial/commercial			Mixed		
values	Min	Мах	Av	Min	Мах	Av	Min	Мах	Av	
Winter	7.24	5.31	6.16	6.86	3.12	5.54	7.45	4.61	5.81	
Spring	7.94	5.93	6.62	6.80	2.42	5.32	7.62	4.31	5.96	
Summer	7.03	5.75	6.31	6.35	4.62	5.34	6.15	5.02	5.57	
Autumn	7.30	5.53	6.27	6.69	4.15	5.65	7.33	4.13	5.90	

Domestic winter weekday real power exponent

Demand reduction (DR)

Electricity	North West	Great Britain		
Summer Minimum demand response = 90MW	Winter maximum demand response = 185MW	Summer Minimum demand response = 250MW	Winter maximum demand response = 1500MW	

Primary (number)	∆V [%]	∆P[%]	Кр	∆Q[%]	Kq			
20:44, 17 September 2014								
Fallowfield (100114)	1.44	2.05	1.43	13.9	10.32			
Baguley (100103)	1.57	2.67 1.71		12.2	8.22			
22:43, Monday 15 December 2014								
Fallowfield (100114)	1	1.78	1.78	7.14	7.37			
Baguley (100103)	1.7	1.9	1.12	10.6	6.53			

Reactive power absorption

Bringing energy to your door

Electricity North West area – 6 tap stagger

Spring	Summer	Autumn	Winter		
130MVAr to 171MVAr	136 to 160MVAr	132-160MVAr	139 – 176MVAr		

Asset health

Bringing energy to your door

the CLASS functions are in line with normal BAU operations indicating negligible loss of life

Closedown & Summary Steve Cox

Closedown activities

Feedback

How would you like us to disseminate this learning?

What do you need from our final closedown event?

What do you need from our closedown report to enable you to understand and use the CLASS functions?

Would you like to see more of these type of workshops on future projects?

Summary

Bringing energy to your door

them with a

demand response

during a system

frequency event

future 'rollout'

QUESTIONS

Want to know more?

Thank you for your time and attention