

# **CLASS**

Customer Load Active System Services Victoria Turnham

LCNI conference, Brighton Session 1.3.2 - HV Technologies 13 November 2013













# **Customer Load Active System Services**





Bringing energy to your door

Maximise use of existing assets

Offer new services and choice for the future

Delivering value to customers

Innovative solutions to real problems

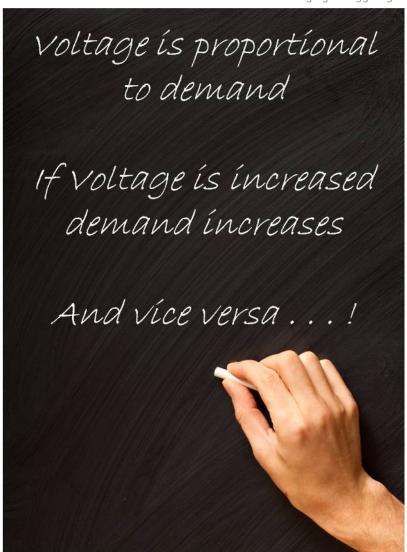
Generate value for customers now

Proven technology deployable today

CLASS

#### Back to school for a moment . . .






Bringing energy to your door

This fundamental relationship is at the heart of CLASS

But how will it change over time as customers adopt new devices?

How could we use this relationship in a smart way to benefit customers?



#### How does it work





00:03:00

2%

80:00:00



2%

The cost £ to make your cup of tea is always the same!

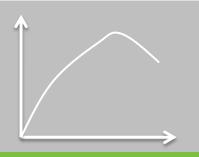
"A problem shared is a problem halved

, ,

20,000 homes in a town

200,000 homes in a city

26 million across the UK


What problems could we solve?

# CLASS proposes to harness thousands of tiny changes at just the right time





Bringing energy to your door



2% decrease in demand at peak times

Lower network costs Faster connections



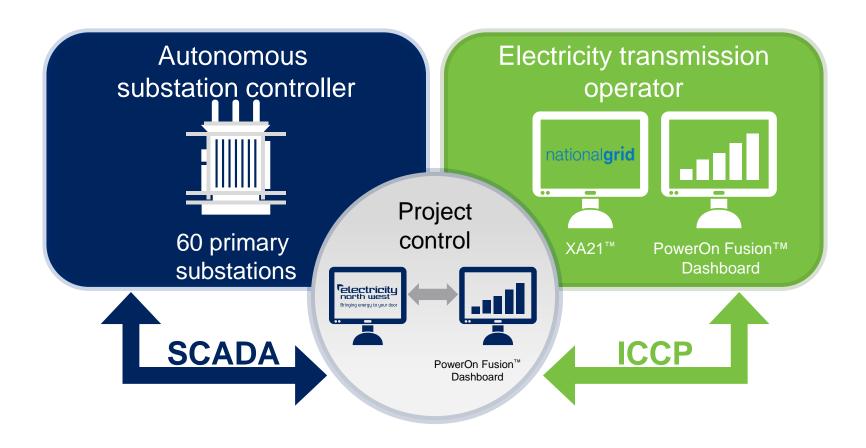
2% decrease in demand

Lower balancing costs
Reduced carbon



2% increase in demand

Lower energy costs


| Today            | Tomorrow             | Future         |  |  |  |
|------------------|----------------------|----------------|--|--|--|
| High peak demand | Response and reserve | Wind following |  |  |  |

# The CLASS trials



|                       | Objective                                                                          | Technique                  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Load modelling        | Establish voltage/demand relationship                                              | Raise & lower tap position |  |  |  |
| Demand response       | Demand response for peak reduction                                                 | Lower tap position         |  |  |  |
| Frequency<br>response | Primary response to reduce demand when frequency falls on the transmission network | Switch out transformer     |  |  |  |
|                       | Secondary response to reduce demand after primary response above                   | Lower tap position         |  |  |  |
| Reactive power        | Absorb high voltages that occur on the transmission network                        | Stagger tap position       |  |  |  |





### The technology





# Smart voltage control relay in major substations linked to control centre

Allows voltage to be adjusted to drive demand changes.

Automatically stabilises network frequency.

Keeps voltages at safe levels on transmission and distribution networks with high amount of DG

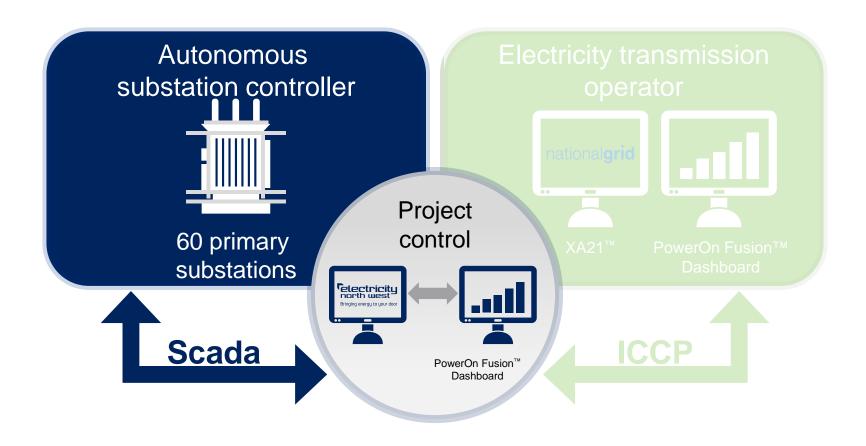




#### Advanced Network Management System

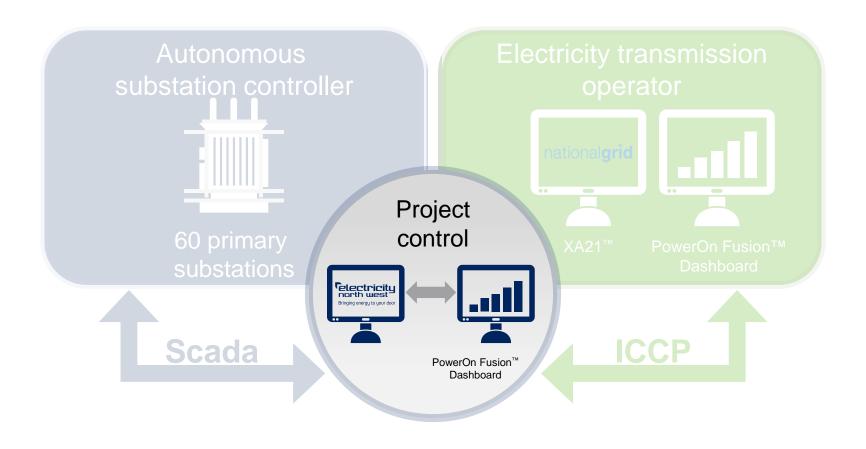
Links DNO control centre to National Grid control centre.

Advanced dashboard measures real time availability.


Allows demand and voltage control call off when required

nationalgrid

Harnessing world class technology in a innovative solution



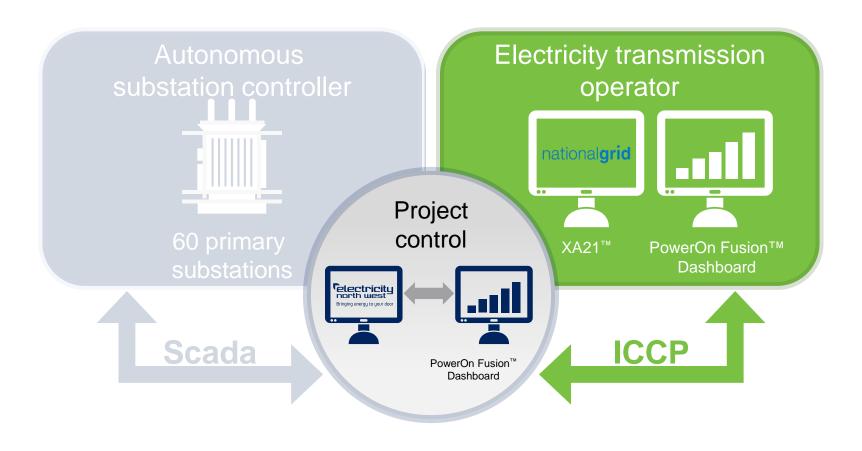












# The CLASS dashboard





| Group                                | T11<br>Tap/Current<br>T12<br>Tap/Current                         | Frequenc  | Frequency control Voltage Control Myers |                       |           |           | Bringing energy to your door  Demand % |      |           |         |
|--------------------------------------|------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------|-----------|-----------|----------------------------------------|------|-----------|---------|
|                                      |                                                                  | MW        |                                         | Voltage Control Mvars |           |           | Boost                                  |      | Reduction |         |
|                                      |                                                                  | Stage 1   | Stage 2                                 | Stage 1               | Stage 2   | Stage 3   | Half                                   | Full | Half      | Full    |
| South manch                          |                                                                  | 6         | 4                                       | 0.4                   | 0.8       | 1.2       | 2                                      | 4    | 2         | 4       |
|                                      |                                                                  | Enabled   | Activated                               | Enabled               | Enabled   | Activated | Disabled                               |      | Enabled   | Enabled |
| Trafford<br>11.1kV                   | T11<br>6/400A<br>T12<br>6/400A                                   | 3         | 2                                       | 0.2                   | 0.4       | 0.6       | 1                                      | 2    | 1         | 2       |
|                                      |                                                                  | Enabled   | Activated                               | Enabled               | Enabled   | Activated | Disabled                               |      | Enabled   | Enabled |
| Monton<br>11kV<br>Mount st<br>10.9kV | T11<br>6/400A<br>T12<br>6/400A<br>T11<br>6/400A<br>T12<br>6/400A | 3         | 2                                       | 0.2                   | 0.4       | 0.6       | 1                                      | 2    | 1         | 2       |
|                                      |                                                                  | Enabled   | Activated                               | Enabled               | Enabled   | Activated | Disabled                               |      | Enabled   | Enabled |
|                                      |                                                                  | 0         | 0                                       | 0                     | 0         | 0         | 0                                      | 0    | 0         | 0       |
|                                      |                                                                  | Inhibited | Inhibited                               | Inhibited             | Inhibited | Inhibited | Inhibited                              |      | Inhibited |         |





## ICCP (Inter Control Centre Protocol)





Bringing energy to your door

#### **DNO** control centre



#### National Grid control centre



Measures real time availability



Control call

Demand and voltage control call off

# CLASS: Customer Load Active System Services





Bringing energy to your door









Exploiting assets, innovative thinking and tiny changes at just the right time

Reinforcement deferral, response balancing and voltage control

Carbon savings and lower customer bills

V & D data underpins network management now and into the future

Technical innovation

World class technology

Financial and carbon savings for customers

New understanding of a fundamental relationship