

SMEs Innovating with the Networks

Richard Lucas, BSc(Eng) MBA MD of ASH Wireless

ASH Wireless:

- Electronics design consultancy
- Specialists in wireless, low power and sensors
- Most projects involve condition monitoring, IoT

Delivering your electricity

Network

Bringing energy to your door

Partners and roles on ENW project

Project Lead =

Bringing energy to your door

CREATIVE WIRELESS ELECTRONICS	RICARDO	UK Power Networks Delivering your electricity	Impact Research	Southampton
Supply complete retrofit monitoring solution Provide ongoing support throughout installation, commissioning and operation of the retrofit thermal monitoring workstream	Analyse trial data Develop methodologies to understand relationship between asset temperature, load characteristics and surrounding environment Determine impact of cooling technologies Develop tool and spec for low cost temperature sensor Recommendations	Work with ASH, Ricardo-AEA and Electricity North West to develop retrofit thermal monitoring solution Participate in evaluation and selection of retrofit cooling techniques	 Facilitate customer focus groups Develop customer communication materials Lead the customer survey engagement 	Peer review of the analysis methodology of the retrofit temperature sensor part of the project An investigative study on the impact of Celsius on the lifetime health of network assets

Step 1: Fit thermal monitoring

Trial Site map

Bringing energy to your door

Celsius - Design Requirements

- Monitoring system can be installed non-invasively;
- All equipment magnetic or cable-tie mounting;
- All equipment battery powered for duration of data gathering project (3.5 years).
- All equipment wireless, only leads are those required to actually take measurements.
- Daily reports to back end. 30 minute measurements of V, I, P, Q, THD, Temperature

CREATIVE WIRELESS ELECTRONICS

- No internet connection available
- No mains power available
- Can't install wiring, mount equipment, etc without intruding on critical operations
- Hostile RF environment for radio connections, indoor, multipath, multiple monitoring points needed
- Need to minimise worker presence for safety reasons

Commissioning app

CELSIUS: Site List				
hione found				
IN PROGRESS				
DENE RD ID: 171526 Location: DIDSBURY Monitoring: Type 1 Region: Manchester (So	In progress >			
Ash Wireless ID: 1 Location: Southampton Monitoring: Type 1 Region: Manchester (So				
TOWNEND FM M6 SUPPLIES_11 ID: 660360 Location: Lowther				
< > [1				

CELSIUS: Hubs and Sensor Help

Sensor Positions

144409FA9D0E

Component: Transformer Type: Single Temperature Sensor-----Position: Top Oil Temperature -Face 1

>

0818D700CF9B

Component: Transformer Type: Single Temperature Sensor-----> Position: Bottom Oil Temperature -Face 1

0F15832CF100:0

<

Component: LV Board Type: Hex voltage flying lead Position: Voltage Phase 1

Celsius technology

K^eLVN Hub

KeLVN Wireless sensor

Celsius technology – trial fit

LV board with three sensors

Celsius technology – trial fit

Transformer

Trial site data

Battery Life

The Hub is an interesting challenge:

- Lithium D-cell, 10AH
- Over 3.5 years life
- Distribution of where the capacity is used:

Key learning points

The installation and environment defines

- Equipment design (e.g. magnetic mounting)
- Protocol (e.g. multiple hubs allowed)
- installation procedure (fast, non-invasive)

GPRS modem auto-connect modes are not reliable, process needs detailed design

Alarms

- Not required in Celsius
- Low latency for alarms is managed with a hub software extension, and external power to the hub

Retrofitting monitoring equipment to legacy assets:

- Ease of installation is primary consideration
- Use of a local wireless sensor network eases installation
- Optimise air interface to manage trade off between latency, data rate, battery life
- Installation tool helpful to make sure equipment in operation/commissioned before team leaves site

Success of the project lay in focusing design & process on installation challenges.

Further development of monitoring solution

Explored with another DNO:

- Adding alarm capability to KeLVN
- Adding additional sensor types
 - Air Flow
 - Flood Level detect
 - Movement/Infrared detection
 - Smoke detection
- Back end limit/alarms

Adding Alarm capability to Logging K^eLVN ^{RT}

Low Power Radio Network

d) Add settings of alarm Thresholds per sensor

GPRS Backhau

"Hot Substation" scenario

Play out fictional scenario, based loosely on UKPN Castle Square fire brigade call out.

Sequence of events leading to overheated/damaged transformer.

- **1.** Ventilation failure
- 2. Power step change on major event (ice rink switch on) but in cold weather
- **3.** Power step change following year, but in warm weather
- 4. Overheat, smoke, damage leading to reduced life

"Hot Substation" scenario

