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Objectives 

 Project objective: 

– Understand the characteristics, behaviour, and future needs of 
Low Voltage Distributions Networks with high penetration of low 
carbon technologies. 

 

 Research objective: 

– Maximise the penetration of low carbon technologies minimising 
the impacts on LV networks. 

 

 Presentation objective: 

– Analyse the impacts of different LCT penetration on real 
low voltage distribution networks under different 
scenarios. 
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Residential Loads 
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Different behaviour and sizes of loads 
and LCT along the day 

Problem Description 
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Problem Description 

 Impacts Assessment of Low Carbon Technologies (LCT) 
penetration in real LV networks. 

 Requirements for solving the problem: 

– Monte Carlo analysis to cope with the uncertainty (LCT size and 
location, sun profile, heat requirements, EV utilization, load 
profile, etc.) 

– Time Series Analysis – 5 min synthetic data. 

– Three-phase unbalanced power flow – OpenDSS. 

 Inputs data: 

– Load and LCT profiles. 

– Real UK networks (topology and characteristics). 
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Problem Description: Methodology 

• Random 
allocation for 
each customer 
node. 

Loads 

• Random 
allocation of 
sites and sizes. 

LCT 
• Time Series 

Simulation. 

• 3 Phase four 
wire power flow 

Power 
Flow 

This process is repeated 100 times 
for each feeder and penetration 
level (% of houses with PV panels). 

Therefore, for the random allocation process, we need to create 
thousands of individual residential profiles 
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Profile Creation: Loads 

 Synthetic data from: “Domestic electricity use: A high – 
resolution energy demand model” (Richardson et al, 2010). 

– Making an automatic process, it is possible to create N individuals 
profiles (probabilistic model) to be used in the simulations. 
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Profile Creation: Winter and Summer Loads 

 A diversified profile is created from a pool of 1000 profiles for 
each month. 

 

 

 

 

 

 

 

 Summer profile: July (PV analysis) 

 Winter profile: February (EV, EHP, uCHP analysis) 

 

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1
4

9
9

7
1

4
5

1
9

3
2

4
1

2
8

9
3

3
7

3
8

5
4

3
3

4
8

1
5

2
9

5
7

7
6

2
5

6
7

3
7

2
1

7
6

9
8

1
7

8
6

5
9

1
3

9
6

1
1

0
0

9
1

0
5

7
1

1
0

5
1

1
5

3
1

2
0

1
1

2
4

9
1

2
9

7
1

3
4

5
1

3
9

3

January

February

March

April

May

June

July

August

September

October

November

December

0

100

200

300

400

500

600

700

800

900

1000

1
4

0
7

9
1

1
8

1
5

7
1

9
6

2
3

5
2

7
4

3
1

3
3

5
2

3
9

1
4

3
0

4
6

9
5

0
8

5
4

7
5

8
6

6
2

5
6

6
4

7
0

3
7

4
2

7
8

1
8

2
0

8
5

9
8

9
8

9
3

7
9

7
6

1
0

1
5

1
0

5
4

1
0

9
3

1
1

3
2

1
1

7
1

1
2

1
0

1
2

4
9

1
2

8
8

1
3

2
7

1
3

6
6

1
4

0
5

February

July



© 2014 A. Navarro - The University of Manchester 10 LVNS Dissemination Event, October 2014 

Profile Creation: PV 

 Real daily profiles for 2012 

 Measured by The 
University of Manchester 
(Sackville Building) 

 The size of the PV panels 
is allocated according to 
UK statistics. 

 Sunny scenarios: The 30 
sunniest profiles are 
considered in the 
simulations. 
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Profile Creation: EV 

 Information Source: “Impact of Electric Vehicle Charging on Residential 
Distribution Networks : An Irish Demonstration Initiative” (CIRED, 2013). 

 Input Data (from field trial): 

– Probability distribution function of EV connection times. 

– Probability distribution function for the daily EV energy requirement. 
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Profile Creation: EV 

 Creation of one EV profile: 

– Random selection of the connection 
time following the previous 
distribution. 

– The amount of energy required is 
randomly selected by following the 
probability distribution. 

– This energy is divided by the battery 
capacity (3 kW/24kWh – Nissan 
Leaf) to calculate the number of 
periods required. 

– The charging time is between the 
connection time and the (connection 
time + the periods required) 
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Profile Creation: µCHP 

 Information Source: Carbon Trust, it is possible to extract the energy 
consumption for different types of houses and different regions (north Ireland, 
north west, etc.) for different days (different outside temperatures). 

 Real µCHP production – North West o England (20/12/2006): cold day (min:-
4C max:+3C). 
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Profile Creation: EHP 

 From the same data base, it is also possible to obtain the heat requirement for 
each of the houses measured. 

 This heat requirement information allow us to build the EHP profile for each 
home 

Heat Requirements 
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Profile Creation: EHP 

1. Heating period identification 

3. EHP Operation by using 
Manufacturer Data 
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Profile Creation: Diversified Profiles  

 Diversified maximum demand for groups of 100 profiles for each 
technology: Histogram and one sample profile for the central bin. 
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Profile Creation: Diversified Profiles  

 Diversified maximum demand for groups of 100 profiles for each 
technology: Histogram and one sample profile for the central bin. 
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Profile Creation: Sensitivities 

 EV: 

– Fast Charging: 6kW, peak consumption as in the original data. 

– Peak Shifted: 3kW, moving the peak consumption from 21:00 to 

19:00.  
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Profile Creation: Sensitivities 

 PV: Maximum irradiance data 
(without any cloud) 

 EHP and uCHP: Coldest day. 
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Profile Creation: Diversified Profiles 

 

 Diversified 
Maximum 
Demand 
Histogram for 
1000 groups of 
100 profiles for 
each technology. 
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Network Creation: Information Received 

 The LV networks were provided in GIS format. 

 Examples: 

Dunton Green Edge Green Greenside 

Howard St Landgate 
Leicester 
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Network Creation: Stages 

 To understand the LV network behaviour, The GIS data need 
to be transform into computer-based models (OpenDSS) 

 The main stages of this transformation process are:  

1. Creation of line segments 

2. Topology reconnection 

3. OpenDSS representation 
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Network Creation: Line segments creation 

 The GIS files use the concept of polyline to store the data. 

 The polyline is a continuous line comprised by one or more line 
segments, which is treated as a single object within the GIS. 

 Process required: Translation from polyline to line segments. 
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Network Creation: Topology Reconnection 

 There are many connections that seem connected but in reality they 
are separated by very small distance. 

 The easy way to identify the connectivity issues is through the 
determination of the connected components.   

Feeder 

(Way_NO)

Number of 

connected 

components

CI

2 19 36%

3 8 89%

4 3 98%

5 9 90%

Dunton Green 

CI (connectivity index) is the proportion between the longest connected component 
and the total feeder length. 
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Network Creation: Topology Reconnection 

 Reconnection process: this stage 
joints every single connected 
component to the main one in 
order to have a totally connected 
feeder. 

Determination of the main 

connected component

Determination of the line 

equations for the main 

connected component

Distance Calculation among the 

vertices and the segments

Selection of the closest vertex 

and segment line

Restructuration of the network 

structure

For each connected component:
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Feeder 2 after the 
reconnection process 
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Network Creation: OpenDSS Representation 

 OpenDSS is a software package to solve multi-phase power 
flow simulations in electrical distribution systems.  

 Using the information received, it is possible to create all of 
the files required to represent the data in OpenDSS format.  

 The files automatically created are: 

– Lines 

– Loads 

– Load shapes 

– Lines code 

– Transformers 

– Monitors 

Example: Lines file 

3 phase model with single phase 
connection is implemented 
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Residential Loads 
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Electric Vehicles (EV) Photovoltaic Panels (PV) 

Electric Heat Pumps (EHP) 
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Different behaviour and sizes of loads 
and LCT along the day 

Impact Assessment: LV Stochastic Behavior  
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Impact Assessment: Methodology 

• Random 
allocation for 
each customer 
node. 

Loads 

• Random 
allocation of 
sites and sizes. 

LCT 
• Time Series 

Simulation. 

• 3 Phase four 
wire power flow 

Power 
Flow 

This process is repeated 100 times 
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Impact Assessment: Metrics 

 

 

 

 
 

 

 

 

 Impacts metrics: 

– Customers with voltage problems: defined 
according to the Standard BS EN 50160. 

– Utilization level of the head of the feeder: hourly 
maximum current divided by the ampacity. 
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Impact Assessment: Example 

 As an example, the main 
results are presented for 
the feeder shown in the 
figure. 

 The voltage, thermal 
problems and energy losses 
are calculated for PV, EV, 
EHP and uCHP. 

 Vsec = 241 Vfn 
(1.05*Vnom) 

2.2 km (including services cables) 
and 94 loads 
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Impact Assessment: Voltage Problems 

% of Customers with 
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Impact Assessment: Thermal Problems 
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Impact Assessment: Daily Energy Losses 
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Impact Assessment: Probability Distributions 

 Since many scenarios were simulated, it is possible to build the 
cumulative distribution for each penetration level. 
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Impact Assessment: Probability Distributions 

 Since many scenarios were simulated, it is possible to build the 
cumulative distribution for each penetration level. 
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Impact Assessment: Case Studies 

 Case I: Balanced versus 
unbalanced analysis. 

 Case II: Impact of the 
granularity data. 

 Case III: Different feeders – 
Different Impacts 
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Impact Assessment: Case I 

 Balanced/Unbalanced Feeder: The impacts are determined 
by assuming a normal case and a perfectly balanced case (1/3 
of the load and LCT per phase) 

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

PV Penetration [%]

C
u
s
to

m
e
rs

 [
%

]

 

 

Balanced Case

Unbalanced Case

0 10 20 30 40 50 60 70 80 90 100 110
5

10

15

20

25

30

PV Penetration [%]

L
o
s
s
e
s
 [
k
W

h
]

 

 

Balanced Case

Unbalanced Case

% of Customers with 
Voltage Problems 

Feeder Energy 
Losses               

PV Analysis 



© 2014 A. Navarro - The University of Manchester 40 LVNS Dissemination Event, October 2014 

Impact Assessment: Case II 

 Granularity: The impacts are determined by using 1, 5, 10, 
15, 30 and 60 min resolution. 
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Impact Assessment: Case III 

 Different feeders Different Impacts: 

% of Customers 
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Multi-Feeder Analysis 

 To have a better understanding about the LCT impacts, 128 feeders 
are modelled and the impact assessment methodology is applied to 
all of them. 

 PV, EV, EHP and µCHP are implemented. 
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Multi-Feeder Analysis: General Overview 

 The feeders with less than 25 customers do not present any 
technical problem for any of the technologies analysed. 

 The summary of the results for the feeders with some technical 
problem for some penetration level are presented in: 

% of feeders with problems per 
technology 

% of “Bottleneck” cases per 
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Multi-Feeder Analysis: Correlation Studies 

 The main characteristics of each feeder are recorded in order to find 
some relationship among these parameters and the apparition of 
the problems. 

 The parameters explored are: 

– Feeder Length. 

– Customer Number. 

– Initial Utilization Level. 

– Customer per km. 

– Main Path. 

– Main Path Impedance. 

– Supplied Area. 

– Supplied Perimeter. 

– Total Impedance Aggregation. 

– Total Path Impedance 
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Multi-Feeder Analysis: Correlation Studies 

 Example: Problems versus Customers Number (PV case): 

 

 

 

 

 

 

• One dot – one feeder. 

• Horizontal axis: number of 
customers in each feeder. 

• Vertical axis: average 
penetration level when the 
problems start in each feeder. 

• at least 1% of the 
customers with voltage 
problems, or 

• The average utilization 
level in the head of the 
feeder is at least 100%. 
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Multi-Feeder Correlation: PV Case 
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Multi-Feeder Correlation: EHP Case 
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Multi-Feeder Correlation: EV Case 
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Multi-Feeder Analysis: Correlation Studies 

 The metrics with the highest coefficient of determination for PV, EHP 
and EV are Initial Utilization Level and the Total Impedance Path 

 

 

 

 

 

 

 So, what about if we combined both metrics. 

 New metric: Multiplication of the Initial utilization Level and the 
total Path Impedance . 

 

 

 

 

R2 Initial 
Utilization 
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Total Path 
Impedance 

PV 0.65 0.76 

EHP 0.70 0.78 

EV 0.53 0.70 
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Multi-Feeder Analysis: Correlation Studies 

 Combined Metric:  
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Multi-Feeder Analysis: Correlation Alternative 

 The utilization level could require the deployment of monitors and 
the total path impedance calculation could require the existence of 
network models. 

 So, can we approach those metrics? 
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Multi-Feeder Analysis: Correlation Alternative 

 Combined Metric: Customers 
and Length 
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Conclusions 

 The proposed probabilistic impact assessment approach allows: 

– Taking into account uncertainties of LCT in LV networks 

– Considering high resolution LCT profiles (PV, EV, EHP, µCHP) 

– Quantifying different impacts and their likelihood 

 

 The utilization of small resolution data (e.g., 15 min, 30min and 60 
min) for loads and generation profiles underestimates the impacts 
of LCT. 

 

 The utilization of single-phase equivalent representation (balanced 
case) for networks and loads underestimates the impacts of LCT. 
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Conclusions - Impacts 

 The approach was applied to 128 real LV feeders 

– Best metric to relate the occurrence of problems: total path impedance 
and the initial utilization level. 

– Second best and practical metric: customer number and feeder length. 

– Feeders with less than 25 customers do not present any technical problem 
for any of the technologies under analysis. 

– The percentage of feeders with the occurrence of voltage problems is 
higher in the PV case (about 62% of the feeders) and the percentage of 
feeders with thermal problems is higher in the EHP case (around 57% of 
the feeders). 

– The technology with lower proportion of feeders with problems is the 
µCHP.  

– In the PV case, the first occurrence of problems is driven by voltage issues 
in all the feeders examined. For the EHP and EV case, the first occurrence 
of problems is driven by voltage and thermal issues.  
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