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Executive Summary  
This report corresponds to the “Characterisation of LV Networks” part of the Low Carbon Network 
Fund Tier 1 project “LV Network Solutions” run by Electricity North West Limited (ENWL). 
 
The aim of the LV Network Solutions project is to provide ENWL with greater understanding of the 
characteristics, behaviour, and future needs of their low voltage networks. This will be based on the 
analysis of data gathered by appropriate monitoring schemes to be deployed on hundreds of LV 
feeders and substations, and the assessment of the corresponding computer-based network models 
in current and future scenarios. 
 
In particular, the procedure to identify statistically representative LV feeders in the North West of 
England is presented. This work provides a unique set of representative feeders thoroughly validated 
which can be used as test (representative) cases for analysing the impact of Low Carbon 
Technologies (LCT) and LV Network solutions. 
 
A set of 383 feeders with network data and the correspondent monitored data was gathered from 
ENWL. After a filtering process (i.e. noise and outliers) this initial number of feeders was reduced to 
232 obtaining the definitive data base for a clustering process. A macro partition of the 232 feeders is 
presented dividing them in terms of the presence of Distributed Generation (DG). Two groups, a first 
one of 156 feeders with-out DG penetration and a second one of 76 feeders with DG penetration, 
were clustered separately and results analysed. A final set of 11 clusters (families) and their 
representative feeders was obtained. 
 
The opportunities in terms of understanding ENWL’s LV Networks and analysing the impacts of 
different technologies are really promising. The whole population of LV feeders can be divided in a 
small set of representative feeders that can relate their characteristics and behaviours to all the 
feeders belonging to their same family. This reduces considerably the complexity of the assessing the 
impacts of LCT on all LV networks. 
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1 Introduction 
As part of the transition towards a low carbon economy, Electricity North West Limited (ENWL), the 
Distribution Network Operator of the North West of England, is involved in different projects funded by 
the Low Carbon Network Fund. The University of Manchester is part of the Tier 1 project “LV Network 
Solutions”. 
 
The objective of this project is to provide ENWL with greater understanding of the characteristics, 
behaviour, and future needs of their LV networks. This will be based on the analysis of data gathered 
by appropriate monitoring schemes to be deployed on hundreds of LV feeders and substations, and 
the assessment of the corresponding computer-based network models in current and future scenarios. 
 
The following report contains a taxonomy approach that characterises a set of 232 real feeders 
provided by ENWL to The University of Manchester. This taxonomy also considers the busbar 
monitoring data for the corresponding substations. 
 
The report contains: 
 

• The information and characteristics of a large set of LV feeders supplied by ENWL and the 
corresponding data treatment. 

• The application of clustering techniques aimed at grouping the population of feeders defined 
by a series of features or attributes according to their similarity. 

• A rigorous validation process that determines the best clustering algorithm and the optimal 
number of clusters. 

• A compilation of clusters comprised by the different feeders coherently related; and, 
• A set of representative feeders across the North West of England. 

 
This report describes the creation process of a set of representative feeders for the north west of 
England in base of topological and monitored data by applying clustering techniques. All data has 
been refined in order to increase the quality of results and each step of the process has been 
mathematically validated so results could have a consistent backup. 
 
A set of initial 232 LV feeders was partitioned in terms of the presence of DG. Two groups, a first one 
of 156 feeders with-out DG penetration and a second one of 76 feeders with DG penetration, were 
clustered separately and results analysed. A final set of 11 clusters (families) and their representative 
feeders were obtained were only 3 of them resulted from the consideration of PV panels’ penetration. 
This small but statistically representative set of feeders can be used for further LCT impact 
assessments or LV network solutions implementation expecting the results to be meaningful for the LV 
network. The behaviour of certain technologies can be match to specific feeders’ types. 
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2 Network and Monitoring Data 
2.1 Network Data 
Similarly to Deliverable 1.2 “Tool for Translating Network Data from ENWL to OpenDSS” the network 
data originally provided by ENWL as Geographic Information System (GIS) files was processed with 
the software ArcGIS. 
 
An automatic process was implemented in Python to extract the network information. In particular, the 
“LLF” attribute (related to the CDCM tariff mapping code, Table 1 was extracted from the MPAN files. 
This was done to increase the granularity of customer types as opposed to the previously adopted 
“Profile Class” attribute. 

Table 1. ENWL customers’ profiles 

CDCM TARIFF MAPPING CODE DESCRIPTION PROFILE CLASS 
511 DOMESTIC UNRESTRICTED PC 1 
531 DOMESTIC TWO RATE PC 2 
581 DOM OFF PEAK (RELATED MPAN) PC 2 
591 SML NONDOM O/P (REL MPAN) PC 4 
631 SMALL NON DOM UNRESTRICTED PC 3 
661 SMALL NON DOM TWO RATE PC 4 
721 NHH UMS PC 1 – 8 
751 LV MEDIUM NON DOMESTIC PC 5 – 8 
752 LV SUB MEDIUM NON DOMESTIC PC 5 – 8 
753 HV MEDIUM NON DOMESTIC PC 5 – 8 
961 LV GENERATION NHH PC 8 

 
The automated process was applied to 141 LV networks with underground feeders. The topology and 
corresponding network data was obtained for 628 feeders. For the clustering process presented in this 
report, only the following attributes were considered: 
 

• Number of customers; 

• Number of customers per ENWL profile class; 

• Total main and service cable lengths [m]; and, 

• Number, capacity [kW] and type of declared DG units. 

 
From the above 141 LV networks only 127 of them could be modelled in OpenDSS (power flow 
simulator), i.e., impedance of cables were fully available. Given the importance of impedances to 
describe network characteristics, only the subset of feeders with OpenDSS models was considered 
(550 out of 628). 
 
In order to eliminate feeders that might create ‘noise’ for the clustering technique, a subsequent 
filtering process was applied by eliminating those with less than 6 customers (too small) or a main total 
cable length shorter than 5 m (might not even be a feeder). 27 feeders were excluded. 
 
The final number of LV feeders suitable for the clustering analysis is 523. 
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2.2 Monitoring Data 
Monitoring data collected at the busbar of the selected feeders include parameters such as: 

• RMS voltages per phase; 

• Active and reactive power per phase; 

• Current magnitudes per phase and neutral; 

• Total Harmonic Distortion (THD); and, 

• Ambient and transformer temperature. 

 

Based on data availability, the period adopted is winter considering weekdays of January, February 
and December 2013. January and February 2014 could not be used due to lack of data. This data was 
only limited to 388 feeders of those selected in the previous section. 
 
In addition, many of the weeks and days within the selected months lacked continuity of data, i.e., 
blocks of minutes or hours without data. A fifth of the 388 feeders was affected by this issue. To 
ensure the largest sample possible, it was necessary to solve the above issue. For this, similar days 
(within the week, month or season) were used to ‘merge’ the available data and provide full daily 
continuity. 
 
It is important to highlight that the monitoring data had different sampling rates (e.g., 1 minute, 5 
minutes and 10 minutes) for different feeders. Consequently, for consistency, 1 minute and 5 minute 
data was averaged to produce 10 minute profiles. 
 
From the 523 LV feeders selected in the previous section, 383 were chosen based on monitoring data 
availability (considering the merging process). These feeders have each 10 minute resolution 
voltages, active and reactive power, currents, THD and temperatures for a 2013 winter weekday. 
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3 Feeders validation and data cleansing 
For the proper functioning of the clustering algorithm any noise or uncommon cases have to be 
eliminated [13]. 

3.1 Feeders Validation 
Similarly to Deliverable 3.2 “Production of Validated Networks”, a feeders’ validation was proposed in 
order to eliminate any sort of incorrect network data. The consumed energy coming from the monitors 
was compared with an estimation based on each feeder’s customers’ number and type. The energy 
consumed by the customers was assessed using their corresponding ENWL’s Elexon-based profiles. 
Generation associated to declared Photo Voltaic (PV) panels was as well estimated in base on 
corresponding solar irradiance values from the Photovoltaic Geographical Information System data 
base [17]. 
 
Two consumption periods were compared and the maximum error identified: 1) the energy consumed 
during the 24hs of day, and 2) the consumed energy between 5pm and 8pm. 
 
The elimination process of noise and outliers must be very careful as we can take the risk of 
eliminating real data that just presents particular characteristics. The definition of boundaries had to be 
done by taking into account that the error between the monitored data and the ENWL Elexon-based 
profile may present varied ranges.  
 
In order to define a boundary, a set of 32 substations where network data had been validated by 
ENWL’s Load Allocation Tool described in Deliverable 3.4 “Review of ENWL’s load allocation tool”. 
Results in terms of error are presented in Table 2. 

Table 2. 32 substations’ error 

Substation Err 
E(Elexon) 

1 17.86% 
2 23.18% 
3 10.55% 
4 11.18% 
5 8.23% 
6 5.71% 
7 10.78% 
8 13.64% 
9 8.26% 
10 7.48% 
11 8.75% 
12 24.48% 
13 30.28% 
14 55.25% 
15 13.25% 
16 10.04% 

 

Substation Err 
E(Elexon) 

17 70.27% 
18 8.83% 
19 8.65% 
20 6.42% 
21 49.01% 
22 45.23% 
23 39.01% 
24 54.93% 
25 69.74% 
26 62.52% 
27 56.83% 
28 56.57% 
29 43.27% 
30 56.94% 
31 10.34% 
32 67.40% 

 

 Error 
max 70.27% 
min 6.00% 

average 30.15% 
median 20.52% 
stdev 22.73% 

 

 
In order to identify if the error from the substations followed a normal distribution probability, the error 
for the 32 substation was standardized with the z-score formula: 
 

𝑧 =
𝑥 −  𝜇
𝜎

 
 
Where: 

• μ is the mean of the population. 
• σ is the standard deviation of the population. 
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Once standardized, data was tested with “The one-sample Kolmogorov-Smirnov test” proposed in 
[18]. It is a nonparametric test used to decide if a sample comes from a population with a specific 
distribution. 
 
The test supposes that the substations’ error follows a normal distribution probability F0(x) which is, for 
each value of x the proportion of substations having an error equal or less to x. The cumulative step-
function of the 32 substations’ error is expected to be closed to this hypothetical distribution. It is 
based on drawing the hypothetical Cumulative Distribution Function (CDF) on a graph and two curves 
at a distance dα(N), with N equal to the number of samples, above and below the first one. If the 
cumulative distribution function for the N samples passes outside of the band at any point the test 
rejects (at the α level of significance) the hypothesis that the true distribution function is F0(x). 
 
Figure 1 shows the similarity between the empirical CDF of the centred and scaled error vector and 
the CDF of the standard normal distribution. 
 

 

 Figure 1. Empirical CDF vs Standard Normal CDF 

The test was run with MATLAB with a 5% significance level and resulted positive which means that 
the initial hypothesis of a normal distribution probability was accepted.  
 
Figure 2 shows the Probability Distribution Function of the 32 substations’ error under the assumption 
of a normal PDF. 
 

 

Figure 1. PDF for the 32 substations’ error 

 
According to the PDF, the error’s limit was set to 60%. This value corresponds to ∼90% of the CDF. 
The decision of limiting the curve to 90% was taken considering the exclusion of possible outliers.  
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Consequently: 
• If the error is smaller than 60% then the model is valid 

 
𝐸3∅ (𝑎𝑙𝑙 𝑑𝑎𝑦)& 𝐸3∅ (5−8𝑝𝑚) ≤  60% → 𝐹𝑒𝑒𝑑𝑒𝑟 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 

 
From the 383 LV feeders selected in the previous section, 246 were validated. 

3.2 Data Cleansing 
Due to some issues with different feeder features a data cleansing was applied. The following features 
were analysed. 
 

• Type of Customer. Feeders presenting non-identifiable customers were eliminated. 8 feeders 
were eliminated. 

• Voltages. Figure 3 shows the box plot of the average voltage level for the 250 feeders. 
Substations “216102” (3 feeders) and “338843” (1 feeder) were excluded as the busbar 
voltages were considerably low (205.6 V and 210.7 V).  

 
 

 

Figure 2. Voltage level Boxplot 

• Type of DG. Feeders 445349908 and 445349909 from substation 177963 were removed as 
they had micro Combined Heat and Power (µCHP) installations. 

 
As a result of the data cleansing, 14 feeders were removed leading to a final set of 232 feeders. 
These 232 feeders were used for the clustering process. 
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4 Feeder features 
The most important topology features and monitored variables for the 232 feeders are presented in 
Figure 4. It can clearly be seen that some of these features, such as the power factor, are similar for 
most feeders. However, significant diversity appears for other features, as it is the case of the neutral 
current. 
 

 

Figure 4. Feeder features 
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A series of observations can be done: 
 

• PF. In terms of planning and operation, power factor is usually considered to be around 0.97. 
As it can see in Figure 4, in most of cases the real value is over the traditional assumption.  

• In. The neutral current can reach average values of 90 A during the day. 
 

4.1 Simplification and Selection of Features 
Given that a compromise has to be found in order to take into account diversity and the potential 
identification of representative families, the selection and simplification of the features (or attributes) 
used for the description of the 232 feeders was made based on the literature review [1]-[3]. 
 
The data from the monitors describes the daily tendency of active and reactive power, voltage, 
current, etc. in all of the feeders considering a 10 minutes resolution throughout a day. This means 
144 available values to describe each parameter per phase per feeder. The direct use of this volume 
of data would not only make the clustering technique slow but also distorts the balance between 
topological characteristics and monitoring data. 
 
Following the adopted approach in [1], the monitoring related features were processed using mean 
values and associated standard deviations. Using mean values and the corresponding standard 
deviations allows reducing three-phase and time-series values into a single representative value. 
 
In addition to the features that provide a general picture of the characteristics of a feeder (e.g., number 
of customers, customer type, active and reactive power, etc.) parameters such as impedance and 
neutral current were also considered as important [1], [2]. The selection of the features required a trial 
and error approach by which the set of features with the best performance was selected. Table 2 
shows the final features used for the description of the feeders. 
 
The main path distance is associated to the path connecting the farthest customer to the head of the 
feeder. The average path distance is the mean value of each customer’s path to the head of the 
feeder. The total path impedance is calculated as the total sum of the impedances of each customer’s 
path to the head of the feeder. 
 

Table 3. Adopted Features 

1- Number of domestic unrestricted customers 9- Total path impedance [ohms] 

2- Number of domestic TWO RATE customers 10- Neutral current [A] 

3- Number of small non domestic OFF PEAK customers 11- Mean 3ɸ daily active power [kW] 
4- Number of small non domestic unrestricted and TWO RATE 
customers 12- Daily mean standard deviation of 3ɸ active power [kW] 

5- Number of LV medium non domestic customers 13- Daily mean standard deviation of 1ɸ active power [kW] 

6- Total conductor length [m] 14- Mean 3ɸ daily reactive power [kvar] 

7- Main path distance [m] 15- Power Factor (PF) 

8- Average path impedance [ohms]  
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5 Clustering Techniques 
The representative feeders can be obtained by applying what is known as clustering techniques or 
grouping algorithms. This methodology consists in grouping similar samples of data in function of the 
features used for their characterization. The result is a set of K clusters (groups) each one defined by 
a centroid (i.e., representative feeder) [4] [5]. 
 
The high degree of complexity and the large volume of information require the clustering process to 
proceed with different levels of detail. Given that distributed generation (DG) was in some feeders 
significant and hence producing noticeable impacts on the monitored features, it was decided to divide 
the feeders into two macro-categories: with and without DG penetration. Without this separation, any 
clustering technique would result in groups of feeders without a robust correlation within them. 
 
Mathematically, each macro-category has 𝑀 patterns (feeders) forming the set 𝐋 =  �𝐥(𝑚),𝑚 = 1, … ,𝑀�. 
Each pattern is characterized by 𝐻 features forming the set 𝐥 =  {𝑙ℎ, ℎ = 1, … ,𝐻}.  
 
In this report, a set of different clustering algorithms were considered and compared. Indifferently of 
the applied algorithm, the individuals (from the total population) must be grouped according to the 
features selected to characterise them. The obtained set of centroids can be represented as 𝐑 =
 �𝐫(𝑘), 𝑘 = 1, … ,𝐾�. 
 
The clustering process can be summarised in a series of steps as follows: 

1- Gather the network and monitored data for the M feeders (patterns). 

2- Data cleansing. 

3- A set of H representative features is selected. 

4- The data is standardised and processed in order to form an M x H matrix which is the main 
input for the clustering algorithm. 

5- The clustering algorithms are run and the centroids created. 

6- The solutions are validated and the most suitable algorithm is selected. 

7- The optimal number of clusters K is defined. 

8- The results are analysed and the representative feeders described. 

 

were steps 3 to 4 are repeated for each macro-category. 

5.1 Clustering Algorithms 
Data clustering algorithms can be generally separated in partition and hierarchical algorithms [6]. In 
the case of partition algorithms, clusters are determined all at once by allocating the K centroids and 
associating the rest of the elements to them. They have the peculiarity that one of the input 
parameters is the number of clusters in which data wants to be partitioned. Hierarchical clustering 
algorithms can be agglomerative or divisive. In the first case, each one of the elements is initially an 
isolated cluster (composed by only one element). The algorithm stars joining these isolated clusters in 
function of their similarity until a unique and final one is obtained. The divisive mode works in the 
opposite way as it starts with only one cluster composed by the total population and then divides it 
progressively. 
 
This report presents two different partition clustering algorithms that are: improved k-means++ and k-
medoids++. One hierarchical algorithm is also presented. 
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5.1.1 Improved k-means++ 
K-means groups the set of M patterns into the desire number of clusters K by minimizing the total Sum 
of Square Distance (SSE) between the data and the associated clusters, as show in the equation 
below.  
 

𝑆𝑆𝐸 = � � 𝑑(𝐫(𝑘), 𝐥)
   𝐥∈𝐋(𝑘)

𝐾

𝑘=1

 

 
Where 𝑑(𝐫(𝑘), 𝐥) is the Euclidean distance between the element 𝐥 and centroid 𝐫(𝑘). It means that the 
algorithm tends to obtain the most compact structure possible to minimise the distance between each 
element and the centroid of its cluster. The algorithm starts by initializing (locating) the K set of 
centroids to then associate the closer elements so as to minimise the SSE. Once all the elements 
have been assigned, the algorithm recalculates the new centroids as the average of the elements 
belonging to each cluster. The whole procedure is repeated until there is no further variation. As the 
centroids are H-dimensional points calculated as an average they are not necessarily an element of 
the population. The representative feeder is defined as the closest element to the centroid. 
 
The k-means clustering algorithm was improved by utilizing and “smart” initialisation process to avoid 
obtaining low quality structures. The new k-means++ algorithm starts the process by randomly 
allocating only the first centroid and associating a probability to the location of the second one. The 
farthest elements to the first cluster have a higher probability to become the next centroid [7]. The 
application of this modification showed a noticeable improvement of the results. 
 
A further modification of the k-means algorithm was applied. The k-means++ algorithm was run 
several times as in each initialisation the new location of the starting centroids could lead to different 
solutions. In each one of these internal runs the objective function of this process was to originally 
minimize the SSE. The modification consisted in using the Global Silhouette Coefficient (GS) (see 
section 5.2), calculated considering the isolated patterns, to define the optimal solution after each 
iteration [8], [9]. This modification tended to isolate uncommon feeders thus leading to better results. 

5.1.2 K-medoids++ 
The k-medoids algorithm is strongly related to k-means but with the particular difference that the initial 
centroids are elements of the population. It was modified as well by utilizing the smart initialisation 
process from k-means++. 

5.1.3 Hierarchical clustering 
The agglomerative hierarchical algorithm was run using the Ward’s Variance Method (WVM) in which 
the distance between a pair of clusters is equal to how much will the SSE increase by merging them 
[9]. Different methods of the hierarchical algorithm were applied but always leading to less compact 
and spherical clusters than WVM. 
 
The basic algorithm is very simple. The steps are listed below. 

1- Each element is its own cluster. 

2- As long as there are more than one cluster 

a. Find the closest pair of clusters. 

b. Fuse them together. 

3- Return as an output the dendrogram that contains the information of all the process. 

5.2 Normalisation of data 
Each one of the feeders was characterised by an H-dimensional vector. In all of the algorithms 
presented, these vectors are grouped together in function of their similarity based on the Euclidean 
distance between them. The Euclidean distance is sensible to differences in the scale of magnitude of 
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the features used to characterise the feeders. In the context of this project, the nature of features was 
very diverse given that network and monitoring data were combined. A normalisation (also called 
standardisation) process was needed in order to make these features vary in comparable ranges [11], 
[12]. 
 
The max-min standardisation formula consisting on the use of minimum and maximal values was used 
for normalising each one of the selected features. 
 

𝑙ℎ
(m) =  

𝑙ℎ
(m)∗ − 𝑀𝑖𝑛{𝑙ℎ}

𝑀𝑎𝑥{𝑙ℎ} −𝑀𝑖𝑛{𝑙ℎ} 

 
Where Min {𝑙ℎ} and Max {𝑙ℎ} correspond to the minimum and maximum values of the feature h and 
𝑙ℎ

(m)∗ is the non-normalised value of the feature h for the element m. If there are no negative values, 
the variation range of each one of the features is going to be limited between 0 and 1. Given that this 
normalisation process uses minimum and maximum values, it is sensitive to the presence of noise and 
uncommon cases. 
 
A different normalisation process known as z-score proposed in [3] and [11] was also considered. It 
normalises data by using mean values and standard deviations. Both values depend on the whole 
data and are also sensitive to the presence of noise. 
 
After an analysis of the minimum and maximum values for each feature considered in this report, it 
was found that noise or outliers were not present. The best performance was found to be adopting the 
max-min standardisation process.  
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6 Clustering validation 
The validation process of the clustering structures allows us to determine two important things: 1) the 
most appropriate clustering algorithm to be used, and 2) the optimal number of clusters to partition the 
population of M feeder. 
 
A set of distances are defined [14]: 

a) Feeder-to-feeder distance: the distance between two members l(i), l(j) of a group where each 
one of the members corresponds to a h-dimensional vector representing a feeder. 

𝑑(𝐥(i), 𝐥(j)) = �
1
𝐻
�(𝑙ℎ

(i) − 𝑙ℎ
(j))2

𝐻

h=1

 

b) Feeder-to-cluster distance: the distance between a representative feeder (centroid) r(k) and the 
subset L(k), calculated as the geometric mean of the distances between the centroid and each 
one of the feeders belonging to the group L(k). 

𝑑(𝐫(𝑘),𝐋(𝑘)) = � 1
𝑛(𝑘) � 𝑑2(𝐫(𝑘), 𝐥(𝑚))2

𝑛(𝑘)

m=1

 

c) Intra-class distance: calculated by using the Feeder-to-cluster distance for all the members n(k) 
of a cluster or group L(k). 

�̂�(𝐋(𝑘)) = � 1
2𝑛(𝑘) �𝑑2(𝐥(𝑣),𝐋(𝑘))2

𝑛(𝑘)

v=1

 

6.1 Clustering Validity indicators 
None of the clustering algorithms presented above (or found in the literature) provide the optimal 
number of clusters. This has to be determined by assessing the quality of the clusters resulting from 
different values of K. To perform this cluster assessment in a comprehensive way, four indices are 
adopted. In addition, these indices will also be used to assess the relative performance of the three 
clustering algorithms. Their formulation has been uniformed in such a way that higher values imply 
better results. The values for each indicator will depend on the algorithm and the number K of clusters. 
 
Two of the adopted indices were presented in [15]. They are based on the concept of the Euclidean 
distance, structure compactness, distance among different clusters, etc. 

 

1. Variance Ratio Criterion 

𝑉𝑅𝐶(𝒀,𝐾, 𝜇) = 𝑀�1 +
𝑊

𝐾 − 1
�
−1

�1 −
𝑊

𝑀 − 𝐾
�                           𝑊 = ��n(𝑘) − 1� �1 −

n(𝑘)

𝑀
�̂�2(𝐋(𝑘))
�̂�2(𝐋)

�
𝐾

k=1

 

2. Similarity Matrix Indicator 

𝑆𝑀𝐼(𝒀,𝐾, 𝜇) = �max
𝑖>𝑗

��1 −
1

ln[𝑑(𝐫(𝑖), 𝐫(𝑗))]�
−1

��
−1

 

Two further indices were considered from [8] and [9]. They are based on the silhouette width index 
which represents how strongly related is a feeder to the cluster it has been associated to.  
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3. Silhouette coefficient 

The silhouette global coefficient (GS) gives us an idea of how strongly related are the elements 
(feeders) to the group they form part of. Each one of the elements is represented by its silhouette 
width index. The elements forming part of the same group are joined together and can be represented 
in a figure similar to a silhouette. The width of each independent silhouette is related to the number of 
elements forming part of the same group. The corresponding height (equal to the silhouette width 
index) represents how strongly related is each one of the feeders to the group it belongs to [8], [9]. 
 

𝑠𝑖 = 𝑏𝑖−𝑎𝑖
max{𝑏𝑖−𝑎𝑖}

  , silhouette width index for the i − object , with − 1 ≤  𝑠𝑖 ≤ 1      

𝑆𝑗 =
1
𝑟𝑗
�𝑠𝑖

𝑟𝑗

𝑖=1

     , local coefficient 

𝐺𝑆 =
1
𝑁𝑐

�𝑆𝑗

𝑁𝑐

𝑗=1

     , local coefficient 

 
Where 𝑟𝑗 is the number of feeders by cluster; 𝑎𝑖 is the mean distance between the i-object and other 
objects of the same group j; and, 𝑏𝑖 is the minimum mean distance between the i-object and the 
objects of the closest group to j. 
 

4. Average Silhouette Coefficient (AvgSC) 

The mean value of the silhouette (AvgSC) width index for the whole population was also used as a 
validity index. It is calculated as: 

𝐴𝑣𝑔𝑆𝐶 =
1
𝑀
�𝑠𝑖

𝑀

𝑖=1
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7 Clustering Results 
The following section presents the clustering results in terms of the representative feeders for each of 
the macro-categories, i.e., with and without PV panels. 

7.1 Feeders without declared DG units 
A set of 156 feeders without declared PV panels characterised by the features described in section 4.1 
(Table 3) was separately clustered. 

7.1.1 Algorithm selection and determination of K 
The macro-category without PV panels was clustered applying the 3 proposed clustering algorithms 
and results were compared using the 4 indices. All indices were calculated without considering 
isolated clusters (only composed by one feeder) as they tend to falsely increase their values making 
any comparison unrealistic. Results, calculated varying the number K of clusters, are presented in 
Figure 6 to 10. The Total Sum of Square Errors (SSE) is as well presented for each case. 
 
Figure 6 shows the total Sum of Square Errors (SSE) for the 3 proposed algorithms. It can be seen 
that Hierarchical algorithm presents the lower values. This was expected as Ward’s method merges 
elements by incrementing the SSE’s value as less as possible. The value of the SSE gives an idea of 
the compactness of clusters but it does not give a notion of between clusters relationship. The figure 
shows that there is not significant variation of total intra-cluster distances after the number K of 
clusters exceeds ∼10. This means that it is most possible that the optimal number of clusters is around 
this value. 
 

 

Figure 6. SSE for K=2 to 25 

The VRC index is not directly suitable to determine the optimal number of clusters as the values 
obtained for different K cannot be compared. Therefore, the formulation presented in [19] was 
considered: 
 

𝑤𝑉𝑅𝐶𝑘 =  (𝑉𝑅𝐶𝑘 − 𝑉𝑅𝐶𝑘−1) − (𝑉𝑅𝐶𝑘+1 − 𝑉𝑅𝐶𝑘) 
 
The set of 4 indices are presented from Figure 7 to 10. They have all been normalised with respect to 
the results obtained with the k-means++ algorithm so they could be compared (with the exemption of 
the wVRC index). All indicators were calculated without considering isolated clusters as they tend to 
falsely increase their values making any comparison unrealistic. 
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Figure 7. GS for K=4 to 25 

 

Figure 8. AvgSC for K=4 to 25 

 

Figure 9. VRC for K=4 to 25 
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Figure 10. SMI for K=4 to 25 

The selection of the optimal number of clusters is not always straight forward. The optimal K needs to 
come from a compromise between a high performance of the different indices and an adequate 
number of clusters. For instance, even if most indices present high values for low values of K there 
would not be any practical interest in obtaining a very low number of clusters as the level of detail for 
each one would be limited. Therefore, the evolution of the indices has to be studied in order to obtain 
a reasonable number of clusters able to properly characterize the data set under study.  
 
For each clustering algorithm, the best solution was identified. This solution results from a compromise 
between a logical number of clusters and high values for the considered indices. Table 4 shows the 
optimal K number of clusters for each algorithm and the corresponding indices. 

Table 4. Cluster assessment (without PV panels) 

Algorithm Improved k-means++ Hierarchical k-medoids++ 
wVRC 0.15 0.02 0.01 
SMI 1.58 1.46 1.36 
GS 0.37 0.33 0.26 

AvgSC 0.55 0.42 0.19 
Optimal K 10 9 8 

 
According to the analysis of results, K=10 for the improved k-means++ algorithm corresponded to the 
optimal solution, i.e., best values in most cases and coherent number of clusters. It has to be noticed 
that 10 is not necessary the final number of representative feeders as some of the groups may consist 
of isolated clusters composed of only one feeder (e.g., excluded for having uncommon 
characteristics).  
 
In order to statistically compare the performance of the improved k-means++ with the hierarchical 
algorithm, the results from 100 executions of the improved k-means++ (1000 initializations of the 
centroids) for K=10 are presented in Figure 11 as boxplots. To facilitate the comparison, values have 
been normalized with respect to the results from the hierarchical algorithm in Table III as in the above 
formula. 

𝑖𝑛𝑑𝑒𝑥𝑖
(𝑒) =  

𝑖𝑛𝑑𝑒𝑥𝑖
(𝑒)∗

𝑖𝑛𝑑𝑒𝑥𝑖ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙
 

 
where 𝑖𝑛𝑑𝑒𝑥𝑖

(𝑒)∗ is the non-normalized value of index i for the eth execution and 𝑖𝑛𝑑𝑒𝑥𝑖ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 the 
value obtained with hierarchical clustering for index i. 
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Figure 11. Improved k-means++ vs. hierarchical clustering for K=10 

The boxplots reveal median values for the GS, AvgSC and SMI indices (medium horizontal bar), the 
inter-quartile range (rectangle, 50% of a normal distribution probability), the typical extremes (slim 
black lines, 99.3%) and outlier values (small crosses). It is clear that the improved k-means++ can 
statistically lead to better results than hierarchical clustering. For instance, in the case of the GS index, 
91% of the cumulative curve was above 1 per unit. 
 
Most of indices values depend on the dataset characteristics so cannot be compared with previous 
works. However, GS and AvgSC should be independent of the type of data as they result from a 
standardized index. Taking this into account, the AvgSC showed considerable better performance 
than results from [2] (about 60% higher). 

7.1.2 Set of representative feeders for K=10 
The silhouette plot in Figure 12 represents the final set of clusters. Only 8 of the 10 obtained clusters 
were considered. The 2 remaining ones (corresponding to isolated clusters, i.e., only one feeder) were 
considered as particular cases could not be representative. 
 

 

Figure 12– Silhouette plot for the set of 11 final clusters without DG 

 
The final step is to check whether the feeders associated to each of the 8 clusters present similar 
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them. This was done manually by comparing the relative similarity of the different characteristics per 
feeder. It was found that the 8 clusters can indeed be considered as a statistical representation of the 
analysed population. 

7.2 Feeders with declared DG units 
The presence of DG in each feeder can affect some of the attributes previously considered for the 
characterization. For instance, it is expected that a progressive reduction on the active power will 
appear as we increase the local generation. The possibilities of understanding the composition in 
terms of DG in the UK or any country LV network not only increase the understanding in terms of the 
actual penetration state, it can provide useful information related to the present impacts that those 
units are having on network metrics. 
 
A set of 76 feeders with declared PV panels was considered. A set of 4 new features representing the 
presence of DG was introduced (15-17) giving the final set of features presented in Table 5. Because 
of this, only some of the attributes from section 4.1 (Table 3) were considered in order reduce the 
complexity of the problem. 

Table 5. Considered features 

1- Total number of customers 10- Neutral current [A] 

2- Number of domestic TWO RATE customers 11- Mean 3ɸ daily active power [kW] 

3- Number of small non domestic OFF PEAK customers 12- Mean 3ɸ daily reactive power [kvar] 
4- Number of small non domestic unrestricted and TWO RATE 
customers 13- Power Factor (PF) 

5- Number of LV medium non domestic customers 14- Total PV declared capacity [kW] 

6- Total conductor length [m] 15- Number of declared PV panels 

7- Main path distance [m] 16- Penetration level (N° PV panels/N° customers) 

8- Average path impedance [ohms] 17- Total PV declared capacity [kW]/ N° of PV panels 

9- Total path impedance [ohms]  

7.2.1 Algorithm selection and determination of K 
Similarly to the methodology applied in section 7.1, data was clustered applying the 3 proposed 
clustering algorithms and results were compared using the 4 validation indices. Results, calculated 
varying the number K of clusters, are presented in Figure 13 to 16. All indices were again normalized 
respect to the Improved k-means++ values and calculated without considering isolated clusters (with 
the exemption of the wVRC index). 
 

 

Figure 13. GS for K=4 to 25 
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Figure 14. AvgSC for K=4 to 25 

 

Figure 15. wVRC for K=4 to 24 

 

 

Figure 16. SMI for K=4 to 25 

For each clustering algorithm, the best solution was identified. This solution results from a compromise 
between a logical number of clusters and high values for the considered indices. Table 6 shows the 
optimal K number of clusters for each algorithm and the corresponding indices. 
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Table 6. Cluster assessment (with PV panels) 

Algorithm Improved k-means++  Hierarchical k-medoids++ 
wVRC 0.05 0.01 0.01 
SMI 1.54 1.45 1.43 
GS 0.50 0.44 0.26 

AvgSC 0.42 0.38 0.22 
Optimal K 9 13 9 

 
According to the analysis of results, K=9 for the improved k-means++ algorithm corresponded to the 
optimal solution, i.e., best values in most cases and coherent number of clusters. It has to be noticed 
that 9 is not necessary the final number of representative feeders as some of the groups may consist 
of isolated clusters composed of only one feeder (e.g., excluded for having uncommon 
characteristics).  

7.2.2 Set of representative feeders with declared DG 
The optimal K number obtained was equal to 9. The k-means++ was found again to be the most 
suitable algorithm. This, however, resulted in 3 isolated clusters. The silhouette plot of the final 6 
clusters considered is presented in Figure 17.  
 

 

Figure 17. Silhouette plot for K=6 

After a thorough manual check of the 6 obtained clusters, only centroids 1, 4 and 6 where considered 
as representative feeders with PV panels. Clusters 2, 3 and 5, presented small penetrations of PV 
panels (smaller than 5% of the customers) and hence required further analysis. In fact, they were 
presenting similar characteristics to the ones of clusters 6, 1 and 3 respectively. 
 
By using the SMI index, modified to be calculated only between a pair of clusters, a symmetric 
“similarity matrix” was obtained were the value of SMI* for the ij element gives an idea of between 
clusters proximity. This matrix is presented in Figure 18. 
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Figure 18. SMI matrix 

The index depends on feeder-to-feeder distance between centroids. It means that higher values are 
related to pairs of clusters with closed centroids. 
 
By analysing the matrix, it was found that clusters 2*, 3* and 5* (the “*” correspond to the partition with 
DG penetration) could be actually included in clusters 6, 1 and 3 respectively. In all of three cases, 
apart from a non-significant PV panel penetration, there was no other metric that could encourage the 
creation a unique cluster (e.g. reverse power flow, PF, etc.). 
 
Clusters 1*, 4* and 6* were renamed to 9, 10 and 11 respectively, in order to follow the numeration in 
section 7.1.2. 

7.3 Final set of representative feeders 
After the comprehensive review and the validation stage a final set of 11 representative feeders was 
obtained. The set of representative feeders is summarised in table 7 showing some of the main 
properties qualitatively compared. Figure 19 shows their distribution in the LV network. 

Table 7 – Final set of representative feeders 

 
 

CLUSTER 1 2 3 4 5 6 7 8
1 0.00 2.22 1.64 2.09 1.63 1.61 1.93 1.53
2 2.22 0.00 2.01 2.24 2.15 1.88 1.78 2.19
3 1.64 2.01 0.00 1.81 1.67 1.59 1.83 1.73
4 2.09 2.24 1.81 0.00 2.12 1.98 1.95 2.05
5 1.63 2.15 1.67 2.12 0.00 1.69 2.04 1.74
6 1.61 1.88 1.59 1.98 1.69 0.00 1.63 1.70
7 1.93 1.78 1.83 1.95 2.04 1.63 0.00 1.95
8 1.53 2.19 1.73 2.05 1.74 1.70 1.95 0.00
2* 1.61 2.00 1.64 1.92 1.80 1.50 1.60 1.69
3* 1.37 2.16 1.61 2.06 1.66 1.54 1.87 1.57
5* 1.59 2.07 1.53 1.79 1.77 1.61 1.81 1.72

k
Total 
cable 

length
N° of customers Type of customers Power consumption Observations

1 Small Low Domestic (mainly domestic unrestricted) Low N/A

2
Small-

medium
Medium-high

Domestic (presence of some low consumption non-
domestic)

Hihgest Highly density area - High neutral current

3 Low Low
Domestic (presence of some low consumption non-
domestic and LV medium non domestic customers)

Medium High neutral current

4 Medium Medium
Non-domestic and domestic ( considerable presence 

of LV medium non-domestic customers)
Medium-high N/A

5 Low Low
Domestic and non-domestic (61% small non-

domestic customers)
Medium High neutral current

6 Medium Medium Domestic (mainly domestic unrestricted) Medium N/A

7 High High Domestic (mainly domestic unrestricted) High Low neutral current

8 Low Low
Domestic (high presence of domestic two rate 

customers)
Low

Main cable path represents 50% of the total 
cable length

9 Small Low Domestic (mainly domestic unrestricted) Lowest High PV panels penetration level (∼40%)

10 Medium Medium
Domestic (presence of LV medium non domestic 

customers)
Low Medium PV panels penetration level (∼30%)

11 Large Medium-high Domestic (mainly domestic unrestricted) High-medium Low PV panels penetration level (∼20%)
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Figure 19. Distribution of representative feeders 

 
The final set of representative feeders with detailed information per feeder is presented in the 
Appendix. 
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8 Conclusions and Future Work 
This report described a methodology to obtain a set of representative feeders from a sample of 
monitored LV networks in the North West of England by applying clustering techniques. 
 
The following are the key aspects of the report: 

• The proposed methodology based the initial considerations such as selection of features, 
validity indicators and potential clustering algorithms on previous works. 

• The proposed methodology improved most of previous works by 1) ensuring a higher quality 
of the clusters (using more validity indicators), and 2) ensuring a significant diversity of feeder 
characteristics. Furthermore, here a clear justification of the most adequate clustering 
technique is provided. 

• A set of initial 232 LV feeders was divided into those with PV panels (76) and those without 
(156). A final set of 11 clusters (groups) and their representative feeders were obtained. Only 
3 of them represented those with PV panels. 

• The proposed methodology is generic and can be easily applied to a much larger set of LV 
networks within ENWL or to other regions or countries (if similar levels of data are available). 

• An improved k-means++ algorithm is proposed (better performance have been proved). 

 

The following are key findings from this work: 

• Clusters 1, 6 and 7 correspond to pure domestic feeders of different lengths. These 
representative feeders correspond to ∼80% of the whole population under analysis. 

• Cluster 1 corresponds to more than half of the population and consists of domestic customers 
(mainly “domestic unrestricted”) with a small total cable length (qualitatively speaking). 

• The mean silhouette coefficient, one of the parameter used for determining the optimal 
number of clusters, was found to be higher (i.e., better) than the one from the Australian report 
(0.55 against 0.23). 

• The customer classification (i.e., CDMC tariff code) proved to be a fundamental parameter as 
it is the strongest link between network and monitored data. A simpler customer classification 
(e.g., residential, commercial and industrial) could have led to lower quality of the clusters and 
hide the interaction between LCT and different profile classes (traditional loads). 

• In terms of planning and operation, power factor is usually considered by DNO or 
Transmission System Operators (TSO) to be around 0.97. In most of cases the real value is 
over the traditional assumption.  

• The neutral current (In) was found to reach average values of 90A during the day. It was found 
that in domestic clusters the n° of customers reduces the diversified In. At the same time, 
clusters with high presence of non-domestic customers presented higher In level. 

• The presence of DG clearly reduces active and reactive power consumption and increment 
the PF level. 
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APPENDIX 
Detailed Results for the Final Clusters 
Looking at the clusters set in more detail, Figures 21 to 27 provide box-plots for each feature 
considered in the analysis. The box-plots reveal median values for each intra-class attribute (medium 
horizontal bar), the inter-quartile range (rectangle), the typical extremes (slim black lines) and outlier 
values (small crosses). In the case of normal distribution probability, the relation between the boxplot 
and the PDF is shown in Figure 20. 
 

 

Figure 20. Box-plot vs normal PDF 

By examining the box-plots, key differences and equivalencies between clusters were found. The set 
of box-plots gives useful information related to the characteristics of England’s North West feeders. 
 
Figures 21 to 27 show as well a good compactness for each box-plot. At the same time it is possible to 
identify marked differences between clusters with consolidates the structure quality clamed after the 
validation process. 
 
Some remarks: 
 

• The median of power factor is in most cases over 0.98 
• All feeders analysed are mostly residential 
• Neutral current presents significant values (up to 70A average). The diversified neutral current 

(In/n° of customers) was found to decrease as the number of customers go up in the case of 
pure domestic clusters. 

• The presence of DG clearly reduces active and reactive power consumption and increment 
the PF level. 
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Detailed Results for the Final Clusters (without DG) 
 

  

  

  

Figure 21. N° and customer type (without DG) 
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Figure 22. Monitoring data (without DG) 
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Figure 23. Conductor characteristics (without DG) 
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Detailed Results for the Final Clusters (with DG) 
 

  

  

  

Figure 24. N° and customer type (with DG) 
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Figure 25. Monitoring data (with DG) 
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Figure 26 Conductor characteristics (with DG) 
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Figure 27. DG penetration characteristics 
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Representative Feeder 1 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted) 
2. (Qualitative) Length: Small 
3. (Qualitative) Daily mean three-phase active power consumption: Low 
4. (Qualitative) Power factor: High (inductive) 
5. PV Panels: No 
6. Other comments: N/A 

 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
  

SUBSTATION 333008
FEEDER 275033193

Total n° of customers 36
511 34
531 2
591 0

631-661 0
751 0

Total length [m] 1002
Main path [m] 270

Average path impedance [ohm] 0.05
Total impedance path [ohm] 1.85

In [A] 15.91
Mean 3ɸ daily active power [kW] 7.01

Mean 3ɸ daily reactive power [kvar] 0.99
Power Factor (PF) 0.988

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.9506 3.9508 3.951 3.9512 3.9514 3.9516 3.9518 3.952 3.9522 3.9524 3.9526

x 10
5

3.8594

3.8596

3.8598

3.86

3.8602

3.8604

3.8606

3.8608
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 2 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted but with presence of 
some low consumption non-domestic) 

2. (Qualitative) Length: Small-medium 
3. (Qualitative) Daily mean three-phase active power consumption: Highest 
4. (Qualitative) Power factor: Lower (inductive) 
5. PV Panels: No 
6. Other comments: Highly density area (there’s a customer per each 10m of cable). There is 

possibly the presence of apartments. It presents the highest values of neutral current.  
 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
  

SUBSTATION 330269
FEEDER 266026370

Total n° of customers 108
511 96
531 6
591 2

631-661 4
751 0

Total length [m] 1164
Main path [m] 374

Average path impedance [ohm] 0.05
Total impedance path [ohm] 5.43

In [A] 77.20
Mean 3ɸ daily active power [kW] 47.02

Mean 3ɸ daily reactive power [kvar] 10.96
Power Factor (PF) 0.974

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.8985 3.899 3.8995 3.9 3.9005 3.901

x 10
5

3.8865

3.887

3.8875

3.888

3.8885

3.889

3.8895

3.89
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 3 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (domestic unrestricted with presence of some low 
consumption non-domestic and LV medium non domestic customers) 

2. (Qualitative) Length: Small 
3. (Qualitative) Daily mean three-phase active power consumption: Medium 
4. (Qualitative) Power factor: High (inductive) 
5. PV Panels: No 
6. Other comments: It presents high values of neutral current even if the number of customers is 

low. 
 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 450028
FEEDER 113038446

Total n° of customers 38
511 30
531 1
591 0

631-661 6
751 1

Total length [m] 1591
Main path [m] 370

Average path impedance [ohm] 0.06
Total impedance path [ohm] 2.33

In [A] 45.54
Mean 3ɸ daily active power [kW] 16.34

Mean 3ɸ daily reactive power [kvar] 2.11
Power Factor (PF) 0.988

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.707 3.7072 3.7074 3.7076 3.7078 3.708 3.7082 3.7084 3.7086 3.7088

x 10
5

4.283

4.2835

4.284

4.2845

4.285

4.2855

4.286
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 4 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic-non and domestic (mainly domestic unrestricted but 
with presence of some low consumption non-domestic and LV medium non domestic 
customers) 

2. (Qualitative) Length: Large 
3. (Qualitative) Daily mean three-phase active power consumption: Medium-high 
4. (Qualitative) Power factor: Medium (inductive) 
5. PV Panels: No 
6. Other comments: N/A 

 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 423108
FEEDER 158024677

Total n° of customers 108
511 91
531 10
591 3

631-661 2
751 2

Total length [m] 2241
Main path [m] 517

Average path impedance [ohm] 0.06
Total impedance path [ohm] 6.04

In [A] 22.22
Mean 3ɸ daily active power [kW] 29.73

Mean 3ɸ daily reactive power [kvar] 0.49
Power Factor (PF) 0.997

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.3152 3.3154 3.3156 3.3158 3.316 3.3162 3.3164 3.3166 3.3168 3.317 3.3172

x 10
5

4.3655

4.366

4.3665

4.367

4.3675

4.368

4.3685

4.369
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 5 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic and non-domestic (2/3 domestic and 1/3 of mainly 
“631-661” customers) 

2. (Qualitative) Length: Small 
3. (Qualitative) Daily mean three-phase active power consumption: Medium 
4. (Qualitative) Power factor: Medium (inductive) 
5. PV Panels: No 
6. Other comments: It presents high values of neutral current even if the number of customers is 

low. 
 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 450092
FEEDER 118030759

Total n° of customers 23
511 9
531 0
591 2

631-661 12
751 0

Total length [m] 764
Main path [m] 253

Average path impedance [ohm] 0.05
Total impedance path [ohm] 1.08

In [A] 17.63
Mean 3ɸ daily active power [kW] 10.28

Mean 3ɸ daily reactive power [kvar] 1.64
Power Factor (PF) 0.990

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.6772 3.6774 3.6776 3.6778 3.678 3.6782 3.6784 3.6786 3.6788 3.679 3.6792

x 10
5

4.276

4.2765

4.277

4.2775

4.278

4.2785
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 6 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted) 
2. (Qualitative) Length: Large 
3. (Qualitative) Daily mean three-phase active power consumption: Medium 
4. (Qualitative) Power factor: High (inductive) 
5. PV Panels: No 
6. Other comments: N/A 

 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 332927
FEEDER 281061517

Total n° of customers 76
511 73
531 3
591 0

631-661 0
751 0

Total length [m] 1664
Main path [m] 360

Average path impedance [ohm] 0.09
Total impedance path [ohm] 6.97

In [A] 35.05
Mean 3ɸ daily active power [kW] 14.38

Mean 3ɸ daily reactive power [kvar] 1.68
Power Factor (PF) 0.990

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.9125 3.913 3.9135 3.914 3.9145 3.915 3.9155 3.916

x 10
5

3.7174

3.7176

3.7178

3.718

3.7182

3.7184

3.7186

3.7188

3.719

3.7192

3.7194
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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Representative Feeder 7 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted) 
2. (Qualitative) Length: Largest 
3. (Qualitative) Daily mean three-phase active power consumption: High 
4. (Qualitative) Power factor: High (inductive) 
5. PV Panels: No 
6. Other comments: The neutral current is lower than expected even if the number of customers 

is the highest one. This contradicts the tendency in other cases (possibly related to a better 
balance of loads). 

 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 165198
FEEDER 193051280

Total n° of customers 169
511 161
531 6
591 0

631-661 2
751 0

Total length [m] 2865
Main path [m] 522

Average path impedance [ohm] 0.05
Total impedance path [ohm] 8.69

In [A] 43.91
Mean 3ɸ daily active power [kW] 35.95

Mean 3ɸ daily reactive power [kvar] 4.01
Power Factor (PF) 0.993

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.849 3.8495 3.85 3.8505 3.851 3.8515 3.852

x 10
5

4.006

4.0065

4.007

4.0075

4.008

4.0085

4.009

4.0095

4.01

4.0105
x 10

5

X coord [m]

Y
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oo
rd

 [m
]
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Representative Feeder 8 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (big presence of domestic two rate customers) 
2. (Qualitative) Length: Small 
3. (Qualitative) Daily mean three-phase active power consumption: Low 
4. (Qualitative) Power factor: High (inductive) 
5. PV Panels: No 
6. Other comments: The main cable path represents 50% of the total cable length (feeder slightly 

branched)  
 
The following table and figure present further features of the feeder as well as its topology. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 333940
FEEDER 272040852

Total n° of customers 31
511 19
531 12
591 0

631-661 0
751 0

Total length [m] 561
Main path [m] 264

Average path impedance [ohm] 0.04
Total impedance path [ohm] 1.11

In [A] 22.80
Mean 3ɸ daily active power [kW] 8.58

Mean 3ɸ daily reactive power [kvar] 0.62
Power Factor (PF) 0.996

CDCM TARIFF 
MAPPING 

CODE

Conductor

3.8572 3.8573 3.8574 3.8575 3.8576 3.8577 3.8578 3.8579 3.858

x 10
5

3.8266

3.8268

3.827

3.8272

3.8274

3.8276

3.8278

3.828

3.8282

3.8284
x 10

5

X coord [m]

Y
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oo
rd

 [m
]
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Representative Feeder 9 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted) 
2. (Qualitative) Length: Small 
3. (Qualitative) Daily mean three-phase active power consumption: Low 
4. (Qualitative) Power factor: Very high (inductive) 
5. PV Panels: Yes. High penetration level (∼40%). 
6. Other comments: This feeder is similar to “representative feeder 1” in terms of conductor and 

customers characteristics. However, there is a noted reduction of active and reactive power 
consumption. There is an increment of neutral current in relation with similar feeders. 

 
The following table and figure present further features of the feeder as well as its topology. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 451004
FEEDER 119066451

Total n° of customers 18
511 18
531 0
591 0

631-661 0
751 0

Declared DG units 7
Total DG capacity [kW] 23

Penetration level 38.9%
Mean DG capacity [kW] 3.3

Total length [m] 593
Main path [m] 242

Average path impedance [ohm] 0.03
Total impedance path [ohm] 0.63

In [A] 19.25
Mean 3ɸ daily active power [kW] 4.77

Mean 3ɸ daily reactive power [kvar] 0.29
Power Factor (PF) 0.998

CDCM TARIFF 
MAPPING 

CODE

Conductor

DG 
characteristics

3.6812 3.6814 3.6816 3.6818 3.682 3.6822 3.6824 3.6826 3.6828 3.683 3.6832

x 10
5

4.2892

4.2894

4.2896

4.2898

4.29

4.2902

4.2904

4.2906

4.2908
x 10

5

X coord [m]

Y
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oo
rd

 [m
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Representative Feeder 10 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted but with presence of LV 
medium non-domestic customers) 

2. (Qualitative) Length: Medium 
3. (Qualitative) Daily mean three-phase active power consumption: Low 
4. (Qualitative) Power factor: Very high (inductive) 
5. PV Panels: Yes. Medium penetration level (∼30%) 
6. Other comments: There is a low neutral current level in function of the customers’ 

composition. 
 
The following table and figure present further features of the feeder as well as its topology. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBSTATION 211951
FEEDER 63057173

Total n° of customers 68
511 64
531 3
591 0

631-661 0
751 1

Declared DG units 24
Total DG capacity [kW] 71.5

Penetration level 33.8%
Mean DG capacity [kW] 3.0

Total length [m] 1793
Main path [m] 414

Average path impedance [ohm] 0.07
Total impedance path [ohm] 5.03

In [A] 25.07
Mean 3ɸ daily active power [kW] 12.25

Mean 3ɸ daily reactive power [kvar] 0.69
Power Factor (PF) 0.998

CDCM TARIFF 
MAPPING 

CODE

Conductor

DG 
characteristics

3.5685 3.569 3.5695 3.57 3.5705 3.571 3.5715 3.572

x 10
5

4.0148

4.015

4.0152

4.0154

4.0156

4.0158

4.016

4.0162

4.0164

4.0166

4.0168
x 10

5

X coord [m]

Y 
co
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[m
]



 Deliverable 3.7 “Characterisation of LV Networks” 
UoM-ENWL_LVNS_Deliverable3.7v08 

14th July 2014 
 

CONFIDENTIAL  46 
Copyright © 2014 V. Rigoni & L. Ochoa - The University of Manchester 

Representative Feeder 11 
The main characteristics of this representative feeder are listed below. 
 

1. Main customer composition: Domestic (mainly domestic unrestricted) 
2. (Qualitative) Length: Large 
3. (Qualitative) Daily mean three-phase active power consumption:  High-medium 
4. (Qualitative) Power factor: Highest (inductive) 
5. PV Panels: Yes. Low penetration level (∼20% considering all cluster) 
6. Other comments: Similar to cluster 6 in terms of conductor and customer’s characteristics. 

However, there is a reduction in terms of active and reactive power consumption and an 
increment of power factor. The neutral current is practically zero. 

 
The following table and figure present further features of the feeder as well as its topology. 
 

 

 

 

 
 
 
 

SUBSTATION 211951
FEEDER 63057172

Total n° of customers 100
511 93
531 7
591 0

631-661 0
751 0

Declared DG units 27
Total DG capacity [kW] 64.4

Penetration level 25.2%
Mean DG capacity [kW] 2.4

Total length [m] 1912
Main path [m] 640

Average path impedance [ohm] 0.08
Total impedance path [ohm] 7.90

In [A] 1.59
Mean 3ɸ daily active power [kW] 14.24

Mean 3ɸ daily reactive power [kvar] 0.72
Power Factor (PF) 0.999

CDCM TARIFF 
MAPPING 

CODE

Conductor

DG 
characteristics

3.571 3.5715 3.572 3.5725 3.573 3.5735 3.574 3.5745 3.575

x 10
5

4.015

4.0155

4.016

4.0165

4.017

4.0175
x 10

5

X coord [m]

Y
 c

oo
rd

 [m
]
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