# Pelectricity

Bringing energy to your door

書圖正書の書

# **Transition to a Low Carbon Future**

LCNI Conference Tuesday 16 October 2018

Stay connected... F B C in www.enwl.co.uk



# **Innovative voltage control**

Dr Geraldine Paterson Innovation Strategy & Transition Engineer Stay connected...

Felectricity

Bringing energy to your door

書圖書商書

www.enwl.co.uk

Background





#### **Project overview**



# Trial overview





Six primary substations
67,000 customers
11 HV circuits – five closable HV rings

Three pole-mounted HV capacitors Three ground-mounted HV capacitors



38 distribution substations Five OLTC transformers



Five substation capacitors 79 LV circuit capacitors

#### **Research overview**



Quantified the voltage optimisation and loss reduction techniques used in Smart Street Proved the benefits of meshed networks and the effects on power quality Quantified the cost benefits and carbon impact related to the Smart Street solution







# Models and scenarios



#### Universities created models of network – used measured data to validate

#### Modelled 54 scenarios

| <b>Three networks</b><br>Dense urban<br>Urban<br>Rural | <ul> <li>Three optimisation modes</li> <li>1. OLTCs</li> <li>2. OLTCs and capacitors</li> <li>3. OLTCs, capacitors and meshing</li> </ul> | <b>Two day types</b><br>Winter weekday<br>Summer weekday | <b>Three years</b><br>2017<br>2035<br>2050 |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|

# Consumption and loss reduction

|             |        | Energy Consumption Reduction (%) |      |      | Losses Reduction (%) |      |      |
|-------------|--------|----------------------------------|------|------|----------------------|------|------|
|             |        | 2017                             | 2035 | 2050 | 2017                 | 2035 | 2050 |
| Deves Urben | Summer | 6.4                              | 6.9  | 7.2  | 8.1                  | 10.3 | 7.0  |
| Dense Urban | Winter | 6.5                              | 7.0  | 7.1  | 8.7                  | 11.0 | 3.7  |
| Urban       | Summer | 7.2                              | 7.8  | 7.1  | 8.7                  | 10.4 | 2.3  |
|             | Winter | 7.8                              | 8.5  | 8.1  | 9.8                  | 12.2 | 7.1  |
| Rural       | Summer | 6.4                              | 7.0  | 7.0  | 10.8                 | 11.6 | 5.0  |
|             | Winter | 6.7                              | 7.3  | 7.2  | 13.0                 | 15.0 | 11.5 |

# High level conclusions

費

| Optimisation benefits<br>(energy)                                                                    | Optimisation benefits<br>(losses)                                       | Trade off between loss<br>and energy consumption<br>reduction                    | <b>Carbon benefits</b>                                                |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                      |                                                                         |                                                                                  |                                                                       |
| 6-8% voltage reduction<br>5.5 – 8.5% energy<br>reduction<br>All networks similar<br>energy reduction | Up to 15% loss reduction<br>Rural network has highest<br>loss reduction | Does exist but depends<br>on load composition<br>Energy consumption<br>dominates | Reductions of 7% to 10%<br>with a full application of<br>Smart Street |

# Overall impact of Smart Street trials

| Perception of power quality                                                                                                                                     | Experience of<br>SDIs                                                                                                            | Fault data                                                                                                              | Smart Street<br>benefits                                                                                             | The hypothesis                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                 |                                                                                                                                  |                                                                                                                         |                                                                                                                      | ?                                                                                                                                                   |
| <ul> <li>Perceptions driven by exposure to power cuts</li> <li>Minimal differences re frequency and/or duration</li> <li>On balance positive changes</li> </ul> | Not associated with a<br>reduction in power<br>quality<br>Do not negatively<br>impact customers'<br>power quality<br>perceptions | SDIs were generally<br>linked to network<br>faults unassociated<br>with the trials or with<br>equipment<br>installation | Generally customers<br>perceived the Smart<br>Street project to have<br>positive or at least<br>neutral implications | Customers in the trial<br>area have not<br>perceived any<br>changes in their<br>electricity supply<br>when the Smart<br>Street method is<br>applied |

#### Outcomes







# Learning points – equipment



### Learning points – voltage control



| Reduces<br>voltage issues | Improves<br>asset<br>utilisation | Reduces<br>losses | Increases<br>fault levels | Customer<br>benefit<br>over<br>permanent<br>connection |
|---------------------------|----------------------------------|-------------------|---------------------------|--------------------------------------------------------|

書

Ř



| LV design                    | OLTC                    | Connections                              | Training                        |  |
|------------------------------|-------------------------|------------------------------------------|---------------------------------|--|
|                              |                         |                                          |                                 |  |
| Is planning tool<br>correct? | Modify<br>specification | Update<br>connection<br>process for LCTs | New procedures<br>and equipment |  |

# Historic distribution network



# Network – today



![](_page_18_Picture_1.jpeg)

X

![](_page_19_Picture_1.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_21_Picture_1.jpeg)

ğ

Summary

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

| e                                                                      | innovation@enwl.co.uk                       |  |  |
|------------------------------------------------------------------------|---------------------------------------------|--|--|
|                                                                        | www.enwl.co.uk/innovation                   |  |  |
|                                                                        | 0800 195 4141                               |  |  |
| y                                                                      | @ElecNW_News                                |  |  |
| in                                                                     | linkedin.com/company/electricity-north-west |  |  |
| f                                                                      | facebook.com/ElectricityNorthWest           |  |  |
|                                                                        | youtube.com/ElectricityNorthWest            |  |  |
| Please contact us if you have any questions or would like to arrange a |                                             |  |  |

one-to-one briefing about our innovation projects