## Pelectricity

Bringing energy to your door

書圖重合書

### Hyperspectral Imaging for Soils Electricity North West and the Manufacturing Technology Centre

Stay connected... Stay connected... Stay connected... Stay connected... Stay connected... Stay connected...

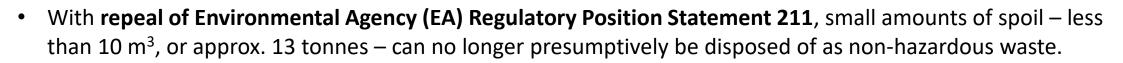
#### Electricity North West – background

#### Operate and maintain over 56,000km of network

2.4 million connections

Supply around 5 million customers

Diverse geographical area


Switched on, adaptable and take pride in what we do



#### The Manufacturing Technology Centre

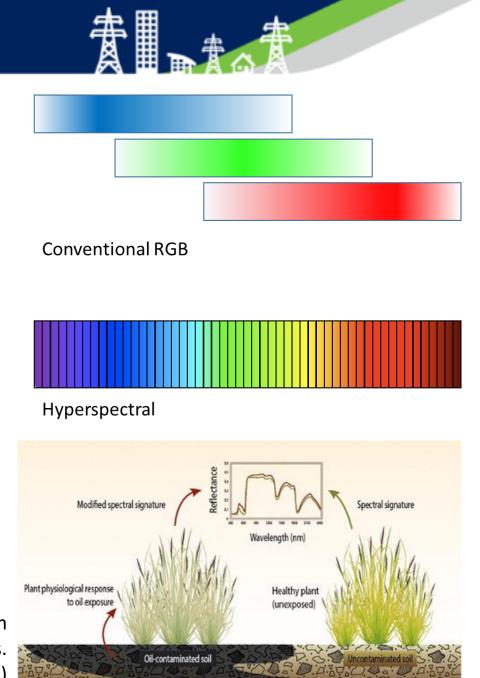
Opened in 2011
Independent RTO
To bridge the valley of death
Prove innovative manufacturing ideas
Manufacturing system solutions
Training & Skills





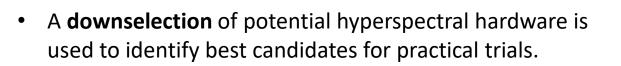
- Companies like Electricity North West will be **required to classify all spoil as hazardous or non-hazardous**, and dispose of accordingly, with costs for hazardous spoil being substantially higher than non-hazardous.
- **Highly desirable to classify waste on site**, and immediately dispose of as appropriate, rather than store, classify, and segregate offsite, or dispose of spoil as hazardous unnecessarily.
- This requires technology capable of inspecting spoil at the work site and providing results in near-real-time.




- The Manufacturing Technology Centre has proposed **Hyperspectral Imaging** (HSI) to identify and measure any contaminants chemicals within soil.
- The measurement could be carried out on site and in real-time to then allow appropriate action to take place immediately, in line with environmental management procedures.
- Hyperspectral cameras range from self-contained handheld digital-camera-like devices to larger, more powerful units designed for integration into more complex systems.



Specim IQ, which can be operated like a conventional digital camera.




- Conventional digital cameras capture light in overlapping red-, green-, and blue-centred wavebands, mimicking the human eye.
- Hyperspectral imaging captures many narrow, non-overlapping wavebands – typically hundreds per image and extending into infrared light.
- Materials have characteristic spectra based on their physical and chemical properties.
- By identifying these features in hyperspectral images, the material composition of an object – or soil – can be identified.
- Hyperspectral imaging is already used for this kind of application in fields like agriculture and geology.



mtc

Inferring oil contamination from hyperspectral imaging of plants. (Lassalle et al., 2018)



- Information from the problem definition and ENWL's current processes is used to generate quantifiable criteria against which candidates can be scored.
  - These criteria consider both imaging capability (e.g. spectral resolution, frame rate) and practical considerations (e.g. durability, portability).
- Laboratory trials currently in progress can then be used to refine scoring and make recommendations to ENWL.

• Capture of information relevant to the inspection problem: current work practice, site conditions, and contaminants to be considered.

• Identify performance criteria by which hyperspectral cameras will be assessed and ranked, with scoring and weighting for each, producing a numerical matrix of criteria. **Specification** 

• Review of market to identify candidate hyperspectral cameras. • Rating of candidate cameras based on the criteria specified in previous stages, filtering out inappropriate cameras and yielding a shortlist for practical trials. Downselection

> • Trials to assess and validate the capability of candidates selected in previous stage within the process requirements. • Reference samples of contaminated soils will be used to evaluate detectability of a subset of potential contaminants.

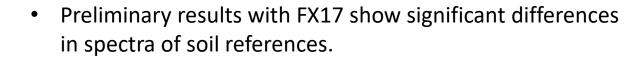
Second Stage Downselection

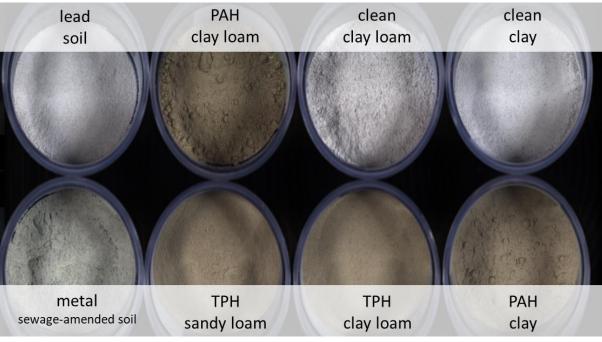
Problem

Definition

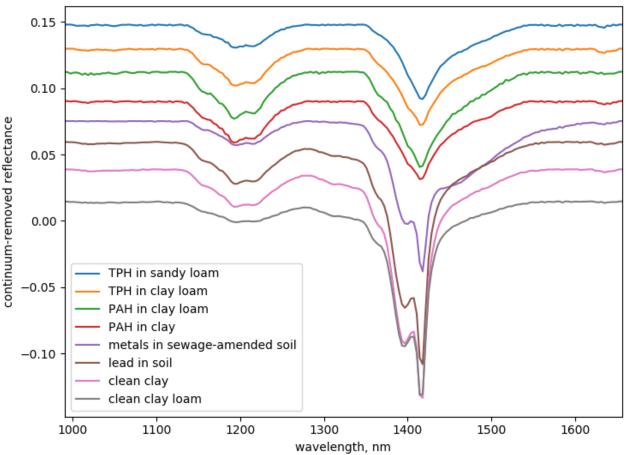
Technical

First Stage





- To evaluate feasibility of contaminant inspection, trials are using reference materials: soils of specific texture and with known contaminants:
  - Total petroleum hydrocarbons;
  - Polycylic aromatic hydrocarbons, including benzo[*a*]pyrene (BaP);
  - Heavy metal compounds;
  - "Clean" samples for comparison.
- Initial trials have used **Specim FX17** and **FX10** cameras.
  - FX17 images in near-infrared (1000 1700 nm),
  - FX10 images in visible to very-near-infrared (400 1000 nm).

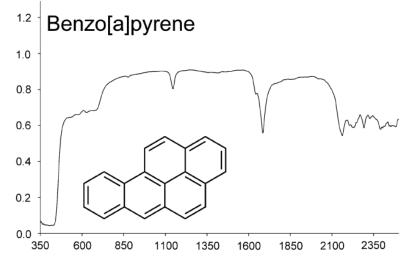





Imaging of reference materials with Specim FX17.






False-colour image of soil reference samples, generated by FX17.



Processed spectra showing variation in absoprtion features around 1200 and 1400 nm.



- To evaluate feasibility of contaminant detection from these spectra, spectral features will be compared to reference spectra and prior work in literature.
- Trials will be repeated with cameras from different manufacturers and with different wavelengths, providing further insight into contaminant detectability and feeding back into downselection process.



Reference spectrum of benzo[a]pyrene. From (Izawa et al., 2014).





#### innovation@enwl.co.uk



www.enwl.co.uk/innovation-strategy



0800 195 4141

@ElecNW\_News

in

linkedin.com/company/electricity-north-west





youtube.com/ElectricityNorthWest

Please contact us if you have any questions or would like to arrange a one-to-one briefing about our innovation projects

# QUESTIONS & ANSWERS