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Project introduction

ENWL are aiming to proactively reduce unplanned maintenance of LV assets, through the use of
an innovative predictive failure model. This will help to assess network integrity now and in the
future, optimise LV asset management decisions and inform future investment planning.

The LV Predict project aims to develop a probabilistic model that can predict which underground
low voltage (LV) cables and joints are most likely to fail.

Degradation predictions are made to understand the greatest risk to LV asset condition by using a
combination of:
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Identification of failure modes
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Framework

“Failures are more often
found at joints than
cables...”
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Probabilistic modelling framework

A probabilistic modelling framework was created to identify links

Historic and future

between different variables, calculate otherwise unobservable f;:fs‘t::;;',
. 4. ) human
data and make predictions. ' intervention
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Probabilistic modelling framework: Demand model
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Probabilistic modelling framework: Demand model

A model was created to predict
extreme cable demands based on
historic usage data.
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Probabilistic modelling framework: Demand model

A model was created to predict fe+02- . » True model
extreme cable demands based on \ — Uncertain model
historic usage data.
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Uncertainty on customer
parameters adds a “risk premium”
to the demand estimate.
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Probabilistic modelling framework: Demand model

A model was created to predict 1e+02- True model
— Uncertain model

extreme cable demands based on

historic usage data.

Uncertainty on customer
parameters adds a “risk premium”
to the demand estimate.

Partial penetration of smart
meters reduces this uncertainty.
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Probabilistic modelling framework: Demand model

A model was created to predict
extreme cable demands based on
historic usage data.

700
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Uncertainty on customer 70
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Probabilistic modelling framework:

Temperature model
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Temperature model

An analytical model was created to predict
cable temperature and account for dynamic
heating effects.
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Temperature model

An analytical model was created to predict

2007 —— Spil thermal resistivity = 0.4 m K/W
cable temperature and account for dynamic 175 | —— Soil thermal resistivity = 2.0 m K/W
. Soil thermal resistivity = 5.0 m.K/W
heat'ﬂg effeCtS- 150 { —— Soil thermal resistivity = 12.0 m_K/W
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Temperature model

Most probable thermal conductivity of

The different soil types in the Electricity soil in ENWL region (W/m.K)

North West region

CLAY TO CLAYEY LOAM

CLAY TO SANDY LOAM

CLAY TO SILT

CLAYEY LOAM

CLAYEY LOAM TO SANDY LOAM

CLAYEY LOAM TO SILTY LOAM

LOAM

LOAM TO CLAY

LOAM TO CLAYEY LOAM

LOAM TO SANDY LOAM

LOAM TO SILTY

LOAM TO SILTY LOAM

PEAT

SAND

SAND TO LOAM

SAND TO SANDY LOAM

SANDY LOAM TO CLAYEY LOAM

@ SANDY LOAMTO SAND
SANDY LOAM TO SILTY LOAM
SILT TO SILTY LOAM
SILTY LOAM

@ SILTY LOAM TO SANDY LOAM

SILTY LOAM TO SILT

VARIED, LOCALLY PEATY

- Thermal Conductivity (W/mK)

Soil that is Soil that is saturated
completely dry with water

Clay 1.11 1.67
Peat 0.08 0.45
Silt 1.67 1.67
Loam 0.91 0.91
Sand 0.77 2.5

Soil type

K = KDry + (KWet - KDry)P(SOilwet)
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Probabilistic modelling framework: Thermal stress model
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Thermal stress model

5, 522
(Avg: 7S%)

0 2 3 (4] ©

DESIGN & CONSTRUCTION

e 1: 3 Core Shaped Solid Aluminium Conductor
2: XLPE Insulation (Brown/Black/Grey)

3: Rubber Bedding

4: Waveform Copper Wire Screen

5: Black PVC Sheath

* Use of different material layers and cable/joint burial in different soil types.
* Differential thermal expansion of components leads to high stress regions.
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Probabilistic modelling framework: Damage model
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Damage model
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Damage model

Damage model created to calculate: Total damage

10 1

Fatigue damage

=]

5 4

Creep damage (including temperature effects)
Plastic damage (from overloading the material)

064

Combined Sobol index

Peak cable temperature (caused by peak
demand) appears to have the strongest
influence on joint failure.

0.2 1

0.0

Temp. range (°K] 4

Max. temp. [°K)
initial crack length (mm)
Dwiell time (5] 4
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Conclusions
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Conclusions so far

ging ene

The probability of underground low voltage
asset failure can be simulated through the
use of a probabilistic framework.
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Conclusions so far

The probability of underground low voltage
asset failure can be simulated through the
use of a probabilistic framework. 700

600
Electric vehicle usage can cause a threefold
increase in peak current in underground
low voltage cables.
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Conclusions so far

The probability of underground low voltage

ivity of sail in 200
asset failure can be simulated through the WL region (W)
use of a probabilistic framework. -
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Conclusions so far

The probability of underground low voltage
asset failure can be simulated through the
use of a probabilistic framework.

Electric vehicle usage can cause a threefold
increase in peak current in underground
low voltage cables.

Soil conditions strongly influence
underground cable temperatures.

Greater demand leads to higher cable
temperatures, which can lead to increased
cable joint damage.
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www.enwl.co.uk/innovation

0800 195 4141

ANSWERS
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[Please contact us if you have any questions or would like to arrange a one-to-one briefing about our innovation projects




Interactive learning tool

LV Predict

A visualisation tool to predict the damage in underground low voltage cables across the Electricity North West region.

Select the cable type: Soil properties and rainfall across the North West region

polymeric insulated rm cable (95mm? solid a The soil type, soil properties, and average rainfall vary across the North West. Use the dropdown to explore how these properties vary in the region. Click to select these properties for the model.

Select a map:
Select the soil type:
Average Daily Rainfall

Peat

Average Daily Rainfall (mm)
Drag the following sliders to change the values: =

Cable Depth (m):

Initial Crack Length (mm):

Number of Customers:

Electric Vehicle (%):

Soil Temperature (°C):

Daily Rainfall (mm):

A The buried cable and joint

“ Different cable types are buried at different depths across the region. Use the sliders on the left to modify the cable type and cable burial depth.
¥ Model Dynamic Heating?

electricit
r F'E‘}NZEEH‘}S"’“ O tnei https://lv-predict.fnc.digital
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https://lv-predict.fnc.digital/

Additional Slides



Electrical-driven degradation

Voltages in LV cables is generally too low
to cause significant damage to the cables
and / or joints.

While unlikely due to the low voltages, a
literature review found that water ingress
could lead to electrical-based degradation
via heating and evaporation of the water,
leading to damage in the conductors.
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Chemical-based degradation

Most chemical-based degradation mechanisms
are not credible for underground LV cables and
joints.

However, thermally-induced degradation of
mechanical properties is possible at high
temperatures.

The likelihood of this occurring becomes

significant when temperatures exceed 75°C, and
when the operating life reaches 20 years.
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FIGURE 6  Stress—strain curve of unaged samples under
different temperatures |Colour figure can be viewed at
wileyonlinelibrary.com|
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Recorded failure data

NaFIRS failures per LSOA

Recorded failure data was analysed to understand
trends for the failure of LV assets.

The most common cause of failure is due to
“deterioration due to ageing or wear (excluding
corrosion)”.

Failure data showed higher failure rates in more
densely populated locations, even when failures are
normalised by household density.

Top 5 highest daily failure counts coincide with dates
of “severe weather events” according to the Met
Office.
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Recorded failure data: population density
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Recorded failure data: weather events

Top 5 highest daily failure counts coincide with dates of “severe weather events”,

according to the Met Office.

Failure Count | Precipitation Weather event
(mm)

13.3
141 15.0
125 24.2
120 1.0
117 26.8
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09/02/2020
28/07/2019

20/01/2021

26/08/2020

19/01/2021

Storm Ciara (8-9t" Feb)

Between “record breaking heatwave”
(25th Jul), and “torrential downpours”
(30-31st Jul)

Storm Cristoph (18-20% Jan)

Day after Storm Francis (25 Aug)

Storm Cristoph (18-20% Jan)
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Temperature model

20

The relationship with high demands and
high temperatures is very “noisy”.
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Temperature model

20

The relationship with high demands and
high temperatures is very “noisy”.
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Damage model
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Electric vehicle charging
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