Capacity to Customers Dissemination Event

27 January 2015

Steve Cox Head of Engineering

U

Housekeeping

×

Connecting the North West

Bringing energy to your door

£12 billion of network assets

Our innovation strategy

Celectricity

Our smart grid development

Bringing energy to your door

Leading work on developing smart solutions

Deliver value from existing assets

Customer choice

LCN Fund Four flagship products (second tier) £36 million

C₂C, CLASS and Smart Street demonstrate demand response

C2CIntroductionEunch

Customer research (commercial)

Commercial review and case studies

Summary and next steps

What is Capacity to Customers?

Bringing energy to your door

Capacity to Customers unlocks latent capacity on the electricity network

C₂C structure and partners

Bringing energy to your door

Learning and dissemination

Traditional network design

C₂C network design

Quality of supply innovation

Bringing energy to your door

Fault statistics for HV circuits

X

The C₂C concept

Bringing energy to your door

13

Key hypotheses

Demand reduction	Active network management	Efficiency	Domestic customers	Commercial customers
Creates a post fault demand response capability	Network automation creates self healing capability and facilitates capacity release	Defers/ optimises reinforcement and reduces carbon intensity	Closed ring configuration is acceptable to customers	Existing or new customers can directly benefit financially by providing the demand response

QUESTIONS

ANSWERS

Agenda

P2/6 change consultation

Bringing energy to your door

Mixed views ...

from all DNOs regarding the need for this derogation

C₂C academic research

How	When	What	
	£	CO ₂	
does the network perform ?	is it cost effective?	is the carbon impact ?	
University of Strathclyde	MANCHESTER 1824 The University of Manchester	TyndallManchester Climate Change Research	

Steven Blair University of Strathclyde

υ

U

Bringing energy to your door

Main objectives – C_2C hypotheses

Overview of results and analysis

Applicable C_2C hypotheses

XX

文

蟗

Customers	Reduces power losses	Quality
Release significant capacity to customers from existing infrastructure	Reduce like-for- like power losses initially but this benefit will gradually erode as newly released capacity is utilised	Improve power quality resulting from stronger electrical networks
Assessing the base case

XX

Increase in capacity (% relative to base case firm capacity)

Primary substation

Average increase in demand capacity:

C₂C demand capacity – uniform growth

+ 59% radial + 66% interconnected

X

Celectricity

C₂C demand capacity – "point" load growth

Bringing energy to your door

Celectricity

C₂C DG capacity

Bringing energy to your door

Primary substation

Average increase in DG capacity:

+ 175% radial + 225% interconnected

Losses – as demand increases

X

Losses – summary of results (for maximum connected demand)

Power quality monitoring

Bringing energy to your door

77 "PQube" devices installed for C₂C trial

Three-phase voltage and current measurements

THD and flicker

Objectives

- Validate dataCompare radial vs. interconnected operation
- Can C_2C operation affect power quality?

Quantifying impact of C_2C on power quality

Bringing energy to your door

Validate time synchronisation

Find observation windows for fair comparison

Ensure data windows are complete

X

C₂C: change in power quality?

Bringing energy to your door

Minor impact on THD and flicker

Change in THD: theoretical results

Bringing energy to your door

Monte Carlo simulations

Randomised:

- Feeder impedances
- Harmonic injection
- Demand

Fault levels for C₂C operation

Three causes of potential increase in fault level:

Fault-contributing demand growth (motors)

DG growth

Interconnection – reduced fault path impedance

Must investigate increase at:

- Primary substations
- NOPs

Fault level increase

	Interconnected operation	~1% at primary ~12% at NOP
At primary +12%	C ₂ C adds, at most	+12% at primary +22% at NOP
✓ NOP Closed	As of 2014, most circuits at	 60% of design rating at primary 10-50% of design rating at NOP
At NOP +22%	HV design fault level	250 MVA

Conclusions

Bringing energy to your door

Results depend significantly on circuit topology and load/DG locations

There are no "typical" circuits

Visualisation of C_2C monitoring data

Bringing energy to your door

http://c2c.eee.strath.ac.uk/

Eduardo Martinez-Cesena University of Manchester

Objectives and outline

Objec	ctives	Outline		
Present the developed distribution	Highlight the conditions that allow C ₂ C to be applied	Background : Traditional distribution planning and the C ₂ C method		
network expansion assessment		Investment assessment: Ofgem's CBA framework		
underlying results		Methodology : Proposed CBA framework		
		Results : The 36 TRIAL networks		

Current distribution planning paradigm

Bringing energy to your door

Traditional practices lead to costly investments in spare capacity to comply with security criteria ● This spare capacity is seldom used

The C₂C method – overview

Bringing energy to your door

The C₂C method facilitates the evolution from passive and preventive to active and corrective distribution networks

CBA – Overview and drawbacks

Bringing energy to your door

Ofgem released a Cost Benefit Analysis (CBA) framework for the assessment investments at the distribution level

Facilitates consistent assessment and comparison of different investment options, such as reinforcements and the C_2C method

£

£

CBA is deterministic Assessment is dependent on scenario characteristics of the solution objectives No systematic approach to formulate a baseline or other investment strategies is provided

CBA methodology – generalities

Bringing energy to your door

The proposed approach is based on Ofgem's CBA, detailed DSR models, demand growth scenarios and bespoke simulation and optimisation engines

Methodology – Imperfect forecasts **Celectricity** Bringing energy to your door 25 Scenario 1 Imperfect forecasts 20 Scenario 2 Demand growth (%) Scenario 3 15 Scenario 4 10 5 Scenario 5 0 6 11 16 21 Time period (years)

Simulated investment strategies

Bringing energy to your door

Baseline Traditional line and substation reinforcements needed whenever firm capacity is approached

 C_2C **Closure of NOP and** investments in network automation and DSR needed to defer or avoid investments recommended by the baseline and traditional reinforcements only when DSR has been exhausted

Optimised investment strategies

Bringing energy to your door

NPC

OSI (Optimal investment Scheme based on the NPC_I): Optimal combinations of traditional line and substation reinforcements and C₂C interventions to minimise investment costs

OSS (Optimal investment Scheme based on the NPC_{I+S}): Optimal combination of traditional line and substation reinforcements and C₂C interventions to minimise investment and social costs

NPC_{I+S}

Simulation and optimisation engines

	Scen.	Baseline		C ₂ C		OSI		OSS	
		Upgrade Y	/ear	Upgrade	Year	Upgrade `	Year	Upgrade	Year
	2	Line1-2 Substation Line2-3	4 5 15	C ₂ C Substation Line1-2	5 17 17	C ₂ C Line1-2 Substation	5 17 17	C ₂ C Line1-2 Substation	1 17 17
		NPC _I :669 k£ NPC _{I+S} :1265 k£		NPC _I :623 k£ NPC _{I+S} :1053 k£		NPC _l : 606 k£ NPC _{l+S} :1232 k£		NPC _I :626 k£ NPC _{I+S} : 1021 k£	
4	4	Line1-2 Substation	9 10	C ₂ C	10	C ₂ C	10	C ₂ C	1
		NPC _I :452 k£ NPC _{I+S} :1039 k£		NPC _l :241 k£ NPC _{l+S} :712 k£		NPC _I : 226 k£ NPC _{I+S} :853 k£		NPC _I :247 k£ NPC _{I+S} : 645 k£	
5	5	Line1-2	5	C ₂ C	6	C ₂ C	6	C ₂ C	1
	K	NPC _I :227 k£ NPC _{I+S} :780 k£		NPC _I :55 k£ NPC _{I+S} :468 k£		NPC _I : 39 k£ NPC _{I+S} :632 k£		NPC _I :59 k£ NPC _{I+S} : 428 k£	

C₂C study results

Bringing energy to your door

All demand profiles were scaled up to trigger line reinforcements after an additional 3% demand growth The substation is assumed to have a headroom of 3%, 8%, 18% and 40%

Line reinforcement costs were assumed to be 100%, 50% and 25% of their calculated value DSR availability was assumed to be 1, 2 or 5 blocks (0.5 MW each block)

Concluding remarks

黄黄

Bringing energy to your door

C₂C based investment strategies tend to outperform the baseline when reinforcement costs are significant and, particularly, when a substation reinforcement is nigh The optimised investment strategies (ie, OSI and OSS) tend to outperform other strategies in most cases by combining C_2C an traditional interventions

Under the baseline assumptions, the C_2C based and optimised strategies generally outperform the baseline by 14% NPC₁ (6% NPC_{1+S}) and 33% NPC₁ (30% NPC_{1+S}), respectively

John Broderick The Tyndall Centre

U

U

What are the carbon impacts of C_2C ?

Bringing energy to your door

Approach based on UN Clean Development Mechanism

$$CI = \sum_{y=0}^{45} BE_y - C2CE_y$$

Headlines

Bringing energy to your door

C₂C substantially reduces the immediate carbon impact of additional network capacity, potentially up to 250 tCO2e per circuit Optimum reinforcement with a combination of C_2C and traditional asset upgrades would be least cost and deliver a lower carbon system than C_2C alone Savings of up to 55% of carbon impact over a 45 year time frame observed in some circuits, although median benefit is ~10%

Facilitated reductions can be substantial but are usually smaller than benefit of losses reduction

Net carbon impact

Impacts are lower if reinforcement is assumed to be driven by the growth of renewable DG The C₂C method is more beneficial in these circumstances

Absolute net carbon impact, RDG scenario 3

What are the carbon impacts of C_2C ?

Scope and classification of impacts	Adopt GHG Protocol core principles for calculating emissions reductions
"Asset carbon" discrete measure of emissions embodied in materials and construction "Operational carbon" continuous measure of indirect emissions from changes in losses, related to the UK grid carbon intensity.	Relevance
	Completeness
	Consistency
"Facilitated reductions" indirect effects on low carbon generators or consumers due to quicker release of capacity	Transparency
	Accuracy

What are the carbon impacts of C_2C ?

Bringing energy to your door

Calculation approach and data sources

Assets

Trial customer quotations indicate type of assets used in each example

Databases for emissions factors: Bath University ICE v2.0, EcoInvent v2.2, Institute of Civil Engineers (ICE) CESMM3 Carbon & Price Guidebook (2011)

Cost Benefit Analysis modelling for network reinforcement under multiple scenarios

Operations

Network power flow modelling for quantities of losses

OfGEM, DECC and National Grid Future Energy Scenarios for grid emissions factor

Facilitated reductions

Assumptions on low carbon technology performance from literature

Asset carbon findings

Bringing energy to your door

Cable is not the only source of asset carbon in network reinforcement

Emissions from civil works are overlooked but substantial, especially when under carriageways

> Impacts are at least seven times greater than Turconi et al's estimate of ~7 tCO₂e/km

GHG emissions per km HV cable installed

Emissions embodied in assets for traditional reinforcement at potential C₂C sites

Trial quotations illustrated the scale and proportion of assets likely to be deployed at single sites ● Data was fed into scenario modelling

GHG emissions per km HV cable installed

Asset carbon findings

Bringing energy to your door

Across the 36 circuits and five demand growth scenarios, asset carbon savings are up to 260tCO₂e

For 8% of cases the same physical investments as traditional reinforcement are required to deliver the necessary capacity but at a later date

Box plot of asset carbon reduction

Operations carbon approach

Bringing energy to your door

Carbon content of grid electricity scenarios

Operations carbon findings

Bringing energy to your door

IC_2C carbon reduction – demand growth scenario 3

 IC_2C carbon reduction – renewable distributed generation scenario 3

Operations carbon findings

Bringing energy to your door

OSS carbon reduction – renewable distributed generation scenario 3

Facilitated reductions

Sensitivity to scenario assumptions

Bringing energy to your door

Demand Growth Scenarios OSS Approach

Largest benefit generally under Scenario 4 • Least under Scenario 1

Renewable DG less consistent but largest benefit also generally under Scenario 4 and least under Scenario 5

Sensitivity to scenario assumptions

Bringing energy to your door

Carbon content of grid electricity scenarios

Grid emissions factors assumptions make a larger difference than variation between growth scenarios

Reductions in losses are more significant if they are assumed to come from a high carbon source

0 Griffin tCO2e Ashton on. Royton Sale Hyde Moss Nook Woodley Castleton Green Lane Greenhill Heywood Holme Rd Middleton Musgrave South East St Annes Whalley Range Chamber Hall Chassen Rd Chatsworth St Clover Hill Crown Lane Denton East Dickinson St **Droylsden East** Exchange St Farnworth Great Harwood **Higher Mill** Hyndburn Rd -evenshulme Levenshulme 2 Monton Reddish Vale Roman Rd Spa Road -200 -400 -600 -800 -100045 years OSS net carbon reduction (demand growth scenario 1) 700 500 300 100 tCO2e Whalley Range Woodley Farnworth Hyde Monton Royton Greenhill Griffin Levenshulme 2 Moss Nook Sale Exchange St Great Harwood Green Lane Hyndburn Rd Middleton Junction Musgrave Reddish Vale Chassen Rd Denton East **Droylsden East** Higher Mill Holme Rd Levenshulme<mark>l</mark> Roman Rd South East Macc Spa Road St Annes -100 Ashton on Mersey Castleton Chamber Hall Chatsworth St Clover Hill Crown Lane **Dickinson St** Heywood -300 -500 -700

Sensitivity to scenario assumptions

600 400 200 20 years OSS net carbon reduction (demand growth scenario 1)

electricity

Conclusions

Bringing energy to your door

A new methodology has been demonstrated finding

C₂C substantially reduces the immediate carbon impact of additional network capacity, potentially up to 250 tCO2e per circuit

More detail and understanding than simple "capacity release" measures is possible and worthwhile

Circuits are currently not optimised for losses minimisation. Combination of C_2C and traditional asset upgrades would be least cost and deliver a lower carbon system

With optimum combination, savings of up to 55% of carbon impact over 45 years have been observed although median benefit is ~10%.

ſ		
	Ε	

Assumed grid emissions factors pay a large role in determining the quantitative but not qualitative outcomes

QUESTIONS

ANSWERS

Kate Quigley Future Networks Customer Manager

Agenda

Customer hypotheses and objectives

Bringing energy to your door

Closed ring configuration is acceptable to customers

To engage with domestic customers about C₂C

To understand the impact of C_2C on customers' supplies

Commercial customers

Existing or new customers can directly benefit financially by providing the demand response

To communicate C₂C to industrial and commercial (I&C) customers

To explore the appeal of C_2C and the uptake of C_2C contracts

Customer hypotheses and objectives

Bringing energy to your door

Domestic customers

Closed ring configuration is acceptable to customers

To engage with domestic customers about C₂C

To understand the impact of C_2C on customers' supplies

Commercial customers

Existing or new customers can directly benefit financially by providing the demand response

To communicate C₂C to industrial and commercial (I&C) customers

To explore the appeal of C_2C and the uptake of C_2C contracts

electricitu Bringing energy to your door Carlisle - domestic **Cross section** of customers Manchester - domestic Three phases of research Manchester – I&C 3 x 90 minute focus groups

Engaged customer panel

Objective: to identify the optimum method of communicating C_2C in a simple manner to **domestic customers** on trial circuits

ECP recommendations

Bringing energy to your door

Should we communicate with customers on trial circuits?

Why should we do so?

What format should the communication take?

What should it say?

When should it be delivered?

To whom should it be delivered?

Good news

electricitu

Brinaina enerau to your do

We've improved your electricity supply /nation with good news electricity supply

efits of C₂C, power cut e register, contact details

before trial started in April

circuits

Lesson learned – domestic customers

Bringing energy to your door

Relationship between DNO and supplier still confusing

Customers are supplier focussed

C₂C is too complex for many customers to understand

Customers think it's their right to know about changes to their supply, particularly if message is positive

Information should be simple and informative

Customers want to know more about their DNO

Customers want to know what to do in a power cut

Bringing energy to your door

Objective: To understand the impact of C₂C on customers' supplies

Measure customers' Compare perceptions perceptions of with customers not on power quality trial circuits Dissemination

David Pearmain Advanced Methods Director Impact Research

Summary of surveys completed

656 quantitative interviews	5 groups of customers
I&C customers who have signed up to the trial	 Target of 10 interviews per wave Completed 17 interviews in YTD
I&C customers who have not signed up to the trial but are on trial circuits	 Target of 10 interviews per wave Completed 30 interviews in YTD
Domestic customers who are on trial circuits	 Target of 100 interviews per wave Completed 312 interviews in YTD
Domestic customers who are not on trial circuits	Target of 100 interviews per waveCompleted 301 interviews in YTD
New connections who have signed up to the trial	Target of 10 interviews per waveCompleted 2 interviews in YTD

Power cut frequency

Bringing energy to your door

Do you feel the *frequency* of power cuts has increased, decreased or stayed the same since April/start of C₂C? YTD

The majority of customers claim there has been no change in the frequency of power cuts since the trial started

If a change has been detected on C_2C circuits, overall it is a positive one

Power cuts on trial circuits

Bringing energy to your door

Have you recently noticed any dips or spikes in

your power from time to time? YTD

Have you experienced a *power cut* at your property **since April 2013**? YTD

The proportion of domestic customers who claim to have experienced a power cut since C_2C began is significantly lower for those on trial circuits

Power cut comparison

How does the total number of power cuts you have experienced *in the last year* compare to previous years? YTD

Domestic customers on non-trial circuits are more likely to have noticed changes in the number of faults they have experienced over the last year

Power cut duration

Do you feel the *duration* of power cuts has increased, decreased or stayed the same since *April/start* of C₂C? YTD

I&C customers signed up to the trial

I&C customers not signed up, on trial circuits

Domestic customers on trial circuits

Domestic customers not on trial circuits

New connections signed up to the trial

Domestic customers on non-trial circuits are more likely to feel fault durations have decreased since the start of C₂C

108

Net %

electricity

To what extent did you find the length of the power cut acceptable?

Our reactive post fault survey has indicated that where SDIs are detected on C_2C circuits they enhance power quality perception

Q20 – Do you feel the number of *dips and spikes* has increased, decreased or stayed the same since April/start of C₂C ? YTD

 I&C customers signed up to the trial
 6%

 I&C customers not signed up, on trial circuits
 4%

 Domestic customers on trial circuits
 3%

 Domestic customers not on trial circuits
 5%

 New connections signed up to the trial
 0%
 50

Customers on C₂C circuits are also less likely to have noticed any variations in dips & spikes Net%

Comparing perception of faults to reality

Bringing energy to your door

Trial Circuits

Control Circuits

Significantly more customers on control circuits misattribute observations of faults

Comparing perception of faults to reality

Bringing energy to your door

There were a greater number of SDI faults under C₂C conditions

Post fault surveys

Bringing energy to your door

Domestic

Commercial

14% Cumbria

59% Lancashire

27% Manchester & Peak

703 surveys conducted between April 2013 and July 2014

Acceptability of faults

Bringing energy to your door

Our reactive *post fault* survey has indicated that where SDIs are detected on C_2C circuits they enhance power quality perception

Acceptability of fault duration

Bringing energy to your door

Commercial customers are less tolerant of faults SDIs significantly improve levels of acceptance for all customers

Priority service customers post fault surveys

Bringing energy to your door

65+ year olds are generally more understanding and accepting of power cut durations

Customers with medical equipment are least likely to find length of power cuts acceptable

There is no evidence to suggest that rolling out C_2C would have any adverse effect on PSR customers

Post fault survey conclusions

	2 in 5 customers remember when the fault occurred unprompted	Changes in fault frequency are more discernible to customers
	Commercial customers are more sensitive to faults	Duration drives power quality perception
QUALITY	Those who experience SDIs notice improvement in their fault quality	PSR/older customers are more accepting of faults
5	SDIs are more acceptable, but less so for longer duration faults	C ₂ C can affect the wider business - less strain on contact centre

Customer engagement

QUESTIONS

ANSWERS

Agenda

Customer hypotheses and objectives

Bringing energy to your door

Domestic customers

Closed ring configuration is acceptable to customers

To engage with domestic customers about C₂C

To understand the impact of C_2C on customers' supplies

Commercial customers

Existing or new customers can directly benefit financially by providing the demand response

To communicate C₂C to industrial and commercial (I&C) customers

To explore the appeal of C_2C and the uptake of C_2C contracts

Bringing energy to your door

Objective: To explore the appeal and potential uptake of C_2C to I&C customers

Targeted mailshot to I&C customers on C₂C circuits Seminar for new connections customers

Project video

Project video

I&C customer survey

Bringing energy to your door

What is the level

of interest by

sector?

What contract elements will make C_2C attractive?

Is there an appetite for C_2C

Bringing energy to your door

52%

of customers found the C₂C concept appealing

would recommend opting into a C₂C contract precontract

31%

26%

of customers would recommend opting into a C₂C contract postcontract

What is the level of interest by sector?

Bringing energy to your door

Key interest metric	All customers % (180)	Manufacturing & processing % (82)	Other sectors % (98)	
Appeal	52	49	54	
Recommend (pre-contract)	31	25	35	
Recommend (post-contract)	26	21	31	

Level of appeal is slightly lower for manufacturing & processing

Gap is more significant for recommendation (10%)

What makes C₂C contracts attractive?

Contract	Key days	Reward	Value of reward
		E	
Length of contract has the biggest single influence on take up	Safeguarded days significantly increase take up rates	The variation in reward is important, but not as critical as the other components	Much higher levels of reward are required to significantly drive up participation

Barriers to C₂C contracts

Summary of I&C customer engagement

Bringing energy to your door

customer

Greatest barrier is

uncertainty about

reliability of supply

C₂C is appealing to I&C customers Contracts signed

Appeal

Barriers

Tailored contracts important

Length of contract had biggest influence

Safeguarded days increase take up

Higher levels of reward drive up participation

Appeal lower for manufacturing & processing

Post acceptance surveys

Celectricity

Bringing energy to your door

Decision to accept		Benefits of signing up	
£	Financial rewards 56%	Financial rewards 69%	£
5	Frequency of interruptions 19%	Environmentally friendly 25%	
	Protected days/times 19%	Minimise disruption 19%	QUALITY

Surveys confirm importance of rewards and minimising disruption

QUESTIONS

ANSWERS

Simon Brooke Smart Metering Programme Manager

Agenda

Objectives

Bringing energy to your door

Commercial customers

Purchase a demand response from existing and new customers thereby creating a new market

To develop contract templates for purchasing C_2C demand response

To discover a purchase price for C_2C demand response

Network operation

Promote the use of commercial solutions to address network constraints

To evaluate the channels to purchase C_2C demand response

To purchase C₂C demand response within trials

Engagement with our customers

Bringing energy to your door

Understanding our customers

disruption or multiple disruptions

Uncertainty regarding

and duration to be defined

Flexible protected days and option for protected circuits

Contract arrangements

2

Bringing energy to your door

Commercial arrangement development

Contract arrangements

Bringing energy to your door

Simplified contract templates

Optional elements based on customer feedback

Separate agreement for controllable switch

Price model demonstration

Bringing energy to your door

Customer interface developed for presentation purposes

Presentations
 crucial to
 customer's
 understanding of
 the C₂C product

X

Relectricity

Both offers delivered together

within Guaranteed Standard

timescales

Pelectricity

Bringing energy to your door

Again key to securing contract is helping customer understand potential impact

Customers valued meetings for

explaining C₂C solution

Higher acceptance for customer engaged early (in seminars)
Trial results and lessons learnt

Bringing energy to your door

Trial results and lessons learnt

	Ten C ₂ C demand response contracts with existing customers
,厚 []	Direct contact with our customers is the most effective
£	C ₂ C demand response purchase price defined
Ē	Ten C ₂ C demand response contracts with connection customers

Demand response results (existing)

Bringing energy to your door

Post fault response is attractive to customers and Electricity North West

Wide range of trial participants, appears most favourable to small manufacturers

Very attractive to multiple site operators

Demand response results (new)

Bringing energy to your door

New connection customers' managed capacity, kVA by sector

Demand response results (new)

Bringing energy to your door

New DR predominantly from small manufacturers again

Good range of enduring post

fault DR capacities

Post fault DR can operate in with other DR programmes

QUESTIONS

ANSWERS

Bringing energy to your door

Agenda

Bringing energy to your door

Project benefits summary

Full set of results and learning from Capacity to Customers will be included in closedown report available on our website in March 2015

Rapidly deployable solution	Reinforcement deferral	Develops new DR market	Cost deferral	Carbon reduction
			£	
Will better exploit existing assets, thus cost-effective and quickly implemented	Releases network capacity for use by customers' LCTs	Creates post fault demand response market which is less intrusive to customers	Can defer reinforcement costs and the time taken to complete the associated works	Minimises carbon- intensive infrastructure

QUESTIONS

ANSWERS

Bringing energy to your door

Want to know more?

Thank you for your time and attention